论文标题

在高压下的晶格不稳定性,非谐和和拉曼光谱:第一原理研究

Lattice instability, anharmonicity and Raman spectra of BaO under high pressure: A first principles study

论文作者

Lavanya, K., Yedukondalu, N., Roshan, S. C. Rakesh, Dabhi, Shweta D., Sripada, Suresh, Sainath, M., Ehm, Lars, Parise, John B.

论文摘要

因此,碱金属氧化物,尤其是MGO和CAO占主导地下地幔,因此,探索该类别化合物的高压行为具有显着的地球物理研究兴趣。在所有这些化合物中,BAO在0-1.5 MBAR的压力范围内表现出丰富的多态性。静态焓计算表明,BAO经历了从NaCl-Type(B1)$ \ rightArow $ NIAS-Type(B8)$ \ rightArrow $扭曲的CSCL-Type(D-B2)$ \ rightArrow $ CSCL-type(B2(B2)at 5.1,19.5, B1 $ \ rightarrow $ b8 $ \&$ b8 $ \ rightarrow $ d-b2过渡是自然界的第一阶,而d-b2 $ \ rightarrow $ b2是二阶或弱的一阶相变。有趣的是,D-B2阶段在宽压力范围内显示出稳定性,$ \ sim $ 19.5-113 GPA。分别通过计算的弹性常数和声子分散曲线证明了环境和高压阶段的机械和动力学稳定性。在高压下,对于B8,D-B2和B2相分别观察到沿M方向的明显的声子软化和软声子模式。压力依赖的拉曼光谱表明在压力下从D-B2到拉曼非活性相的相变。总体而言,本研究对BAO压力诱导的结构相变背后的基本机制提供了全面的理解。

Alkaline-earth metal oxides, in particular MgO and CaO dominate Earths lower mantle, therefore, exploring high pressure behavior of this class of compounds is of significant geophysical research interest. Among all these compounds, BaO exhibits rich polymorphism in the pressure range of 0-1.5 Mbar. Static enthalpy calculations revealed that BaO undergoes a pressure induced structural phase transition from NaCl-type (B1) $\rightarrow$ NiAs-type (B8) $\rightarrow$ distorted CsCl-type (d-B2) $\rightarrow$ CsCl-type (B2) at 5.1, 19.5, 120 GPa respectively. B1 $\rightarrow$ B8 $\&$ B8 $\rightarrow$ d-B2 transitions are found to be first order in nature whereas d-B2$\rightarrow$ B2 is a second order or weak first order phase transition. Interestingly, d-B2 phase shows stability over a wide pressure range, $\sim$19.5-113 GPa. Mechanical and dynamical stabilities of ambient and high pressure phases are demonstrated through computed elastic constants and phonon dispersion curves, respectively. Under high pressure, significant phonon softening and soft phonon mode along M-direction are observed for B8, d-B2 and B2 phases, respectively. Pressure dependent Raman spectra suggest a phase transition from d-B2 to Raman inactive phase under pressure. Overall, the present study provides a comprehensive understanding of underlying mechanisms behind pressure-induced structural phase transitions in BaO.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源