论文标题

VQ和协方差矩阵的组合,以供扬声器识别

A combination between VQ and covariance matrices for speaker recognition

论文作者

Faundez-Zanuy, Marcos

论文摘要

本文根据经典矢量量化(VQ)和协方差矩阵(CM)方法提出了一种新的算法,用于说话者识别。合并的VQ-CM方法可以通过可比的计算负担提高每种方法的识别率。它提供了一个直接的程序,可以获得与具有完整协方差矩阵的GMM相似的模型。实验结果还表明,它比单独的VQ或CM更强大。

This paper presents a new algorithm for speaker recognition based on the combination between the classical Vector Quantization (VQ) and Covariance Matrix (CM) methods. The combined VQ-CM method improves the identification rates of each method alone, with comparable computational burden. It offers a straightforward procedure to obtain a model similar to GMM with full covariance matrices. Experimental results also show that it is more robust against noise than VQ or CM alone.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源