论文标题

具有自适应置信度的半监督深度面部表情识别

Towards Semi-Supervised Deep Facial Expression Recognition with An Adaptive Confidence Margin

论文作者

Li, Hangyu, Wang, Nannan, Yang, Xi, Wang, Xiaoyu, Gao, Xinbo

论文摘要

仅选择未标记数据的部分来训练大多数半监督学习方法,其置信度得分通常高于预定义的阈值(即置信度)。我们认为,应充分利用所有未标记的数据,应进一步提高识别性能。在本文中,我们学习一个自适应置信度(A​​DA-CM),以充分利用所有未标记的数据来半监督的深层面部表达识别。所有未标记的样本都通过将其置信度得分与每个训练时期的自适应学习置信度进行比较,将其分为两个子集:(1)子集I,包括其置信分数不低于边缘的样品; (2)子集II,包括其置信度得分低于边缘的样品。对于子集I中的样品,我们将它们的预测限制为匹配伪标签。同时,子集II中的样品参与了特征级的对比目标,以学习有效的面部表达特征。我们对四个具有挑战性的数据集进行了广泛的评估ADA-CM,这表明我们的方法实现了最先进的性能,尤其是以半监督的方式超过了完全监督的基线。消融研究进一步证明了我们方法的有效性。源代码可在https://github.com/hangyu94/ada-cm上获得。

Only parts of unlabeled data are selected to train models for most semi-supervised learning methods, whose confidence scores are usually higher than the pre-defined threshold (i.e., the confidence margin). We argue that the recognition performance should be further improved by making full use of all unlabeled data. In this paper, we learn an Adaptive Confidence Margin (Ada-CM) to fully leverage all unlabeled data for semi-supervised deep facial expression recognition. All unlabeled samples are partitioned into two subsets by comparing their confidence scores with the adaptively learned confidence margin at each training epoch: (1) subset I including samples whose confidence scores are no lower than the margin; (2) subset II including samples whose confidence scores are lower than the margin. For samples in subset I, we constrain their predictions to match pseudo labels. Meanwhile, samples in subset II participate in the feature-level contrastive objective to learn effective facial expression features. We extensively evaluate Ada-CM on four challenging datasets, showing that our method achieves state-of-the-art performance, especially surpassing fully-supervised baselines in a semi-supervised manner. Ablation study further proves the effectiveness of our method. The source code is available at https://github.com/hangyu94/Ada-CM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源