论文标题
由电点驱动的液滴的动力学
Dynamics of droplets driven by electrowetting
论文作者
论文摘要
即使电气启动(EWOD)是具有多种液滴操作应用的各种生物学和工程过程中的有用策略,但仍然缺乏对电解动力学动态的完整理论解释。在本文中,我们提出了一个有效的理论模型,并使用Onsager变分原理来成功得出过度阻尼和失业状态的液滴的非平衡电解动力学的控制方程。发现EWOD底物上液滴的扩散和缩回动力学可以在过度阻尼的态度中得到很好的捕获。通过改变液态粘度,液滴尺寸和施加的电压,我们确认EW的瞬态动力学可以以独立于液体粘度,液滴尺寸和施加电压的时间表来表征。我们的模型提供了对EW驱动的扩散动态的完整基本解释,这对于从自我清洁到新颖的光学和数字微流体设备的广泛应用非常重要。
Even though electrowetting-on-dielectric (EWOD) is a useful strategy in a wide array of biological and engineering processes with numerous droplet-manipulation applications, there is still a lack of complete theoretical interpretation on the dynamics of electrowetting. In this paper, we present an effective theoretical model and use Onsager variational principle to successfully derive the governing equations of non-equilibrium electrowetting dynamics for a droplet in both overdamped and underdamped regimes. It is found that the spreading and retraction dynamics of a droplet on EWOD substrates can be fairly well captured in the overdamped regime. By varying liquid viscosity, droplet size, and applied voltage, we confirm that the transient dynamics of EW can be characterized by a timescale independent of liquid viscosity, droplet size and applied voltage. Our model provides a complete fundamental explanation of EW-driven spreading dynamics, which is important for a wide range of applications, from self-cleaning to novel optical and digital microfluidic devices.