论文标题
解决联合边缘学习参与困境:真实和相关的观点
Solving the Federated Edge Learning Participation Dilemma: A Truthful and Correlated Perspective
论文作者
论文摘要
一个名为Federated Edge Learning(FEL)的新兴计算范式在网络边缘启用了智能计算,具有为边缘设备保留数据隐私的功能。鉴于他们的限制资源,要获得FEL的高执行绩效成为一个巨大的挑战。从系统操作程序的角度来看,大多数最先进的工作都集中在增强FEL上,在FEL系统的组成步骤中采取的预防措施很少。尽管最近的一些研究认识到FEL形成的重要性并提出了以服务器为中心的设备选择方案,但数据大小的影响在很大程度上被忽略了。在本文中,我们利用游戏理论来描述边缘设备之间关于是否参与FEL的决策困境,或者不给予其本地数据集的异质大小。为了实现个人和全局优化,使用服务器来解决参与困境,这需要设备本地数据集的准确信息收集。因此,我们利用机制设计来实现真实的信息招标。在相关平衡的帮助下,我们从全球角度得出了对设备的决策制定策略,该策略可以实现FEL的长期稳定性和功效。为了进行可伸缩性,我们优化了基本解决方案到多项式水平的计算复杂性。最后,进行了基于实际和合成数据的广泛实验以评估我们提出的机制,实验结果证明了性能优势。
An emerging computational paradigm, named federated edge learning (FEL), enables intelligent computing at the network edge with the feature of preserving data privacy for edge devices. Given their constrained resources, it becomes a great challenge to achieve high execution performance for FEL. Most of the state-of-the-arts concentrate on enhancing FEL from the perspective of system operation procedures, taking few precautions during the composition step of the FEL system. Though a few recent studies recognize the importance of FEL formation and propose server-centric device selection schemes, the impact of data sizes is largely overlooked. In this paper, we take advantage of game theory to depict the decision dilemma among edge devices regarding whether to participate in FEL or not given their heterogeneous sizes of local datasets. For realizing both the individual and global optimization, the server is employed to solve the participation dilemma, which requires accurate information collection for devices' local datasets. Hence, we utilize mechanism design to enable truthful information solicitation. With the help of correlated equilibrium, we derive a decision making strategy for devices from the global perspective, which can achieve the long-term stability and efficacy of FEL. For scalability consideration, we optimize the computational complexity of the basic solution to the polynomial level. Lastly, extensive experiments based on both real and synthetic data are conducted to evaluate our proposed mechanisms, with experimental results demonstrating the performance advantages.