论文标题

有限时间热力学循环的几何形状与各向异性热波动

Geometry of finite-time thermodynamic cycles with anisotropic thermal fluctuations

论文作者

Miangolarra, Olga Movilla, Taghvaei, Amirhossein, Chen, Yongxin, Georgiou, Tryphon T.

论文摘要

与Carnot发动机的经典概念相比,它可以在不同温度的热浴之间交替接触,自然发生的过程通常从各向异性收获能量,同时暴露于不同强度的化学和热波动。在这些情况下,负责能量转导的启用机制通常是存在非平衡稳态(NESS)的存在。这种现象的合适随机模型是布朗陀螺仪,这是一种两度的自由随机驱动的系统,该系统将能量和热量与环境交换。在这种模型的背景下,我们从随机控制的角度提出了能量收集机制的几何视图,该观点需要在热力学歧管上进行系统状态的强制周期性轨迹。耗散和工作输出相应地表示为受控过程的路径积分,并且对功率和效率的基本局限性通过与等术问题的关系以几何术语表示。该理论是针对远离平衡和线性响应制度的高阶系统提出的。

In contrast to the classical concept of a Carnot engine that alternates contact between heat baths of different temperatures, naturally occurring processes usually harvest energy from anisotropy, being exposed simultaneously to chemical and thermal fluctuations of different intensities. In these cases, the enabling mechanism responsible for transduction of energy is typically the presence of a non-equilibrium steady state (NESS). A suitable stochastic model for such a phenomenon is the Brownian gyrator -- a two-degree of freedom stochastically driven system that exchanges energy and heat with the environment. In the context of such a model we present, from a stochastic control perspective, a geometric view of the energy harvesting mechanism that entails a forced periodic trajectory of the system state on the thermodynamic manifold. Dissipation and work output are expressed accordingly as path integrals of a controlled process, and fundamental limitations on power and efficiency are expressed in geometric terms via a relationship to an isoperimetric problem. The theory is presented for high-order systems far from equilibrium and beyond the linear response regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源