论文标题

通过约束随机优化,社交网络上的错误信息的社会公平缓解措施

Socially Fair Mitigation of Misinformation on Social Networks via Constraint Stochastic Optimization

论文作者

Abouzeid, Ahmed, Granmo, Ole-Christoffer, Webersik, Christian, Goodwin, Morten

论文摘要

最近的社交网络的错误信息缓解方法倾向于研究如何通过考虑整个网络统计量表来减少错误信息。但是,个人之间不平衡的错误信息暴露敦促研究缓解资源的公平分配。此外,网络具有随着时间的变化而变化的随机动力。因此,我们引入了一个随机和非平稳的背包问题,并将其解决方案应用于减轻社交网络运动中的错误信息。我们进一步提出了一种通用的错误信息缓解算法,该算法对不同的社交网络的错误信息统计量很强,从而在现实世界中造成了有希望的影响。新颖的损失功能可确保用户之间的公平缓解。我们通过将缓解激励预算智能分配给背包并优化损失功能来实现公平性。为此,一个学习自动机(LA)的团队推动了预算分配。每个LA都与用户相关联,并通过在其状态空间上进行非平稳和随机的步行来学会最大程度地减少其对错误信息的影响。我们的结果表明,基于洛杉矶的方法是如何鲁棒的,并且在缓解方式如何影响网络用户方面胜过类似的错误信息缓解方法。

Recent social networks' misinformation mitigation approaches tend to investigate how to reduce misinformation by considering a whole-network statistical scale. However, unbalanced misinformation exposures among individuals urge to study fair allocation of mitigation resources. Moreover, the network has random dynamics which change over time. Therefore, we introduce a stochastic and non-stationary knapsack problem, and we apply its resolution to mitigate misinformation in social network campaigns. We further propose a generic misinformation mitigation algorithm that is robust to different social networks' misinformation statistics, allowing a promising impact in real-world scenarios. A novel loss function ensures fair mitigation among users. We achieve fairness by intelligently allocating a mitigation incentivization budget to the knapsack, and optimizing the loss function. To this end, a team of Learning Automata (LA) drives the budget allocation. Each LA is associated with a user and learns to minimize its exposure to misinformation by performing a non-stationary and stochastic walk over its state space. Our results show how our LA-based method is robust and outperforms similar misinformation mitigation methods in how the mitigation is fairly influencing the network users.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源