论文标题
使用参数切换算法控制COVID-19数学模型的动力学
Controlling dynamics of a COVID--19 mathematical model using a parameter switching algorithm
论文作者
论文摘要
在本文中,通过定期切换参数值,可以控制Covid-19的自主数学模型的动力学。为此,使用参数切换(PS)算法。通过这种技术,可以证明,所考虑系统的每个吸引子都可以在数值上近似,因此可以确定该系统沿着稳定的周期性运动或混乱的吸引子进行发展。这样,算法可以被视为混乱或抗控制(混乱)类似算法。与现有的混乱控制技术产生了修改后的吸引子,带有PS算法的吸引子属于SET系统吸引子。分析表明,使用PS算法,每个系统吸引子都可以表示为某些现有吸引子的凸组合。此外,证明PS算法可以看作是Parrondo \ textsc {\ char13} s Paradox的概括。
In this paper the dynamics of an autonomous mathematical models of COVID-19 depending on a real parameter bifurcation, is controlled by switching periodically the parameter value. For this purpose the Parameter Switching (PS) algorithm is used. With this technique, it is proved that every attractor of the considered system can be numerically approximated and, therefore, the system can be determined to evolve along, e.g., a stable periodic motion or a chaotic attractor. In this way, the algorithm can be considered as a chaos control or anticontrol (chaoticization)-like algorithm. Contrarily to existing chaos control techniques which generate modified attractors, the obtained attractors with the PS algorithm belong to the set system attractors. It is analytically shown that using the PS algorithm, every system attractor can be expressed as a convex combination of some existing attractors. Moreover, is proved that the PS algorithm can be viewed as a generalization of Parrondo\textsc{\char13}s paradox.