论文标题

通过隐式反馈学习个性化项目到项目推荐指标

Learning Personalized Item-to-Item Recommendation Metric via Implicit Feedback

论文作者

Hoang, Trong Nghia, Deoras, Anoop, Zhao, Tong, Li, Jin, Karypis, George

论文摘要

本文通过隐式反馈从新的度量学习角度研究了推荐系统中项目到项目的建议问题。我们开发并研究了一个可靠的深度度量模型,该模型既捕获项目的内部内容及其如何与用户进行交互。学习这种模型有两个关键的挑战。首先,没有明确的相似性注释,它偏离了大多数度量学习方法的假设。其次,这些方法忽略了一个事实,即项目通常由多个元数据来源表示,不同用户使用这些来源的不同组合来形成自己的相似性概念。 为了应对这些挑战,我们开发了一种新的度量表示形式,该表示嵌入了概率模型的内核参数。这有助于表达用户与之交互的项目之间的相关性,该项目可用于预测用户与新项目的互动。我们的方法取决于类似项目诱导同一用户的类似交互的直觉,因此拟合度量参数化模型以预测隐式反馈信号可以间接指导其找到适合每个用户的最合适的度量。为此,我们还分析了所提出的方法如何以及何时从理论镜头有效。在几个现实世界数据集上也证明了它的经验效果。

This paper studies the item-to-item recommendation problem in recommender systems from a new perspective of metric learning via implicit feedback. We develop and investigate a personalizable deep metric model that captures both the internal contents of items and how they were interacted with by users. There are two key challenges in learning such model. First, there is no explicit similarity annotation, which deviates from the assumption of most metric learning methods. Second, these approaches ignore the fact that items are often represented by multiple sources of meta data and different users use different combinations of these sources to form their own notion of similarity. To address these challenges, we develop a new metric representation embedded as kernel parameters of a probabilistic model. This helps express the correlation between items that a user has interacted with, which can be used to predict user interaction with new items. Our approach hinges on the intuition that similar items induce similar interactions from the same user, thus fitting a metric-parameterized model to predict an implicit feedback signal could indirectly guide it towards finding the most suitable metric for each user. To this end, we also analyze how and when the proposed method is effective from a theoretical lens. Its empirical effectiveness is also demonstrated on several real-world datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源