论文标题

刺激的确定性普拉基频频率小核心的产生

Stimulated generation of deterministic platicon frequency microcombs

论文作者

Liu, Hao, Huang, Shu-Wei, Wang, Wenting, Yang, Jinghui, Yu, Mingbin, Kwong, Dim-Lee, Colman, Pierre, Wong, Chee Wei

论文摘要

芯片尺度的非线性谐振器中的耗散性Kerr孤子产生最近观察到了显着的进步,从大规模并行通信,自我引用的振荡器到双弯曲光谱。经常检查这些非线性谐振器中独特的驱动方案和分散性,以实现孤子和孤子样的时间脉冲形状以及相干频率梳子的产生。正常的分散体提供了一种互补的方法来弥合非线性动力学研究,包括与平坦高原或platic子形成平方脉冲形成的可能性。在这里,我们报告了通过+55 FS2/mm正常组速度分散体的自由光谱范围和氮化硅环中的刺激泵送在芯片尺度频率梳中的观察结果。通过各种侧带调制频率调整Platicon频率梳子在光谱和时间测量中都检查。由第二谐波自动相关和互相关确定,我们观察到19 GHz扁平频率梳子上的17 ps脉冲脉冲的明亮正方形Platicon脉冲。通过辅助激光辅助的热稳定,我们超过了可拖动的热双性拖动,并扩展了对较窄的2 ps ps platicon脉冲状态的模式锁定访问,并由非线性动力学建模和边界限制讨论支持。

Dissipative Kerr soliton generation in chip-scale nonlinear resonators has recently observed remarkable advances, spanning from massively-parallel communications, self-referenced oscillators, to dual-comb spectroscopy. Often working in the anomalous dispersion regime, unique driving protocols and dispersion in these nonlinear resonators have been examined to achieve the soliton and soliton-like temporal pulse shapes and coherent frequency comb generation. The normal dispersion regime provides a complementary approach to bridge the nonlinear dynamical studies, including the possibility of square pulse formation with flat-top plateaus, or platicons. Here we report observations of square pulse formation in chip-scale frequency combs, through stimulated pumping at one free-spectral-range and in silicon nitride rings with +55 fs2/mm normal group velocity dispersion. Tuning of the platicon frequency comb via a varied sideband modulation frequency is examined in both spectral and temporal measurements. Determined by second-harmonic auto-correlation and cross-correlation, we observe bright square platicon pulse of 17 ps pulsewidth on a 19 GHz flat frequency comb. With auxiliary-laser-assisted thermal stabilization, we surpass the thermal bistable dragging and extend the mode-locking access to narrower 2 ps platicon pulse states, supported by nonlinear dynamical modeling and boundary limit discussions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源