论文标题

学习分解的表示,用于一次性渐进面交换

Learning Disentangled Representation for One-shot Progressive Face Swapping

论文作者

Li, Qi, Wang, Weining, Xu, Chengzhong, Sun, Zhenan, Yang, Ming-Hsuan

论文摘要

尽管近年来面部交换引起了很多关注,但它仍然是一个具有挑战性的问题。现有方法利用大量数据示例探索面部交换的内在属性,而无需考虑面部图像的语义信息。此外,身份信息的表示往往是固定的,导致次优的面部交换。在本文中,我们提出了一种名为Faceswapper的简单而高效的方法,用于基于生成对抗网络的一击面交换。我们的方法由一个分离的表示模块和语义引导的融合模块组成。分离的表示模块包含一个属性编码器和一个身份编码器,该模块旨在实现身份和属性信息的分离。身份编码器更灵活,并且属性编码器包含的属性细节比其竞争对手更多。受益于分散的表示形式,Faceswapper可以逐渐交换面部图像。此外,将语义信息引入了语义引导的融合模块中,以控制交换区域并更准确地对姿势和表达进行建模。实验结果表明,我们的方法可以在基准数据集上获得最新的结果,并具有较少的培训样本。我们的代码可在https://github.com/liqi-casia/faceswapper上公开获取。

Although face swapping has attracted much attention in recent years, it remains a challenging problem. Existing methods leverage a large number of data samples to explore the intrinsic properties of face swapping without considering the semantic information of face images. Moreover, the representation of the identity information tends to be fixed, leading to suboptimal face swapping. In this paper, we present a simple yet efficient method named FaceSwapper, for one-shot face swapping based on Generative Adversarial Networks. Our method consists of a disentangled representation module and a semantic-guided fusion module. The disentangled representation module comprises an attribute encoder and an identity encoder, which aims to achieve the disentanglement of the identity and attribute information. The identity encoder is more flexible, and the attribute encoder contains more attribute details than its competitors. Benefiting from the disentangled representation, FaceSwapper can swap face images progressively. In addition, semantic information is introduced into the semantic-guided fusion module to control the swapped region and model the pose and expression more accurately. Experimental results show that our method achieves state-of-the-art results on benchmark datasets with fewer training samples. Our code is publicly available at https://github.com/liqi-casia/FaceSwapper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源