论文标题
基于指法的钢琴表演教育的得分难度分析
Score difficulty analysis for piano performance education based on fingering
论文作者
论文摘要
在本文中,我们将得分难度分类作为音乐信息检索的子任务(MIR),可用于音乐教育技术,用于个性化课程生成和得分检索。我们为我们的任务介绍了一个新颖的数据集,即Mikrokosmos-Difficulty,其中包含147台符号表示的钢琴作品,以及其作曲家BélaBartók和Publishers得出的相应难度标签。作为我们方法论的一部分,我们提出了基于不同钢琴指法算法的钢琴技术特征表示。我们将这些功能用作两个分类器的输入:一个封闭的复发单元神经网络(GRU),具有注意机制和在评分段中训练的梯度增强树。我们表明,对于我们的数据集手指,基于数据集的功能要比仅考虑分数中的音符的简单基线要好。此外,带有注意机制分类器的GRU超过了梯度增强的树木。我们提出的模型是可以解释的,并且能够在短期段和全球范围内在本地产生困难反馈。代码,数据集,模型和在线演示可用于可重复性
In this paper, we introduce score difficulty classification as a sub-task of music information retrieval (MIR), which may be used in music education technologies, for personalised curriculum generation, and score retrieval. We introduce a novel dataset for our task, Mikrokosmos-difficulty, containing 147 piano pieces in symbolic representation and the corresponding difficulty labels derived by its composer Béla Bartók and the publishers. As part of our methodology, we propose piano technique feature representations based on different piano fingering algorithms. We use these features as input for two classifiers: a Gated Recurrent Unit neural network (GRU) with attention mechanism and gradient-boosted trees trained on score segments. We show that for our dataset fingering based features perform better than a simple baseline considering solely the notes in the score. Furthermore, the GRU with attention mechanism classifier surpasses the gradient-boosted trees. Our proposed models are interpretable and are capable of generating difficulty feedback both locally, on short term segments, and globally, for whole pieces. Code, datasets, models, and an online demo are made available for reproducibility