论文标题
部分可观测时空混沌系统的无模型预测
Localization of Pairs in One-Dimensional Quasicrystals with Power-Law Hopping
论文作者
论文摘要
与最近的邻居跳跃中的一维准晶体中的将定位与短距离相互作用无关。我们从数值上证明,当跳跃遵循功率定律$ 1/r^α$时,这种对称性就会损坏。特别是,对于排斥的状态,我们发现表明过渡到本地化的临界准静态性始终受标准的aubry-andré临界点的限制,而当跳高范围增加时,吸引人的绑定二聚体会在较大的Quasiperiodic调节中定位。广泛的数值计算确定了对排斥和有吸引力的相互作用的配对能量差距的对比性质,以及对甲基碘的代数定位的行为,与逆碘,相互作用强度和幂律啤酒花的关系。这里讨论的结果与与幂律耦合系统的量子动力学的研究直接相关。
Pair localization in one-dimensional quasicrystals with nearest-neighbor hopping is independent of whether short-range interactions are repulsive or attractive. We numerically demonstrate that this symmetry is broken when the hopping follows a power law $1/r^α$. In particular, for repulsively bound states, we find that the critical quasiperiodicity that signals the transition to localization is always bounded by the standard Aubry-André critical point, whereas attractively bound dimers get localized at larger quasiperiodic modulations when the range of the hopping increases. Extensive numerical calculations establish the contrasting nature of the pair energy gap for repulsive and attractive interactions, as well as the behavior of the algebraic localization of the pairs as a function of quasiperiodicity, interaction strength, and power-law hops. The results here discussed are of direct relevance to the study of the quantum dynamics of systems with power-law couplings.