论文标题

从负温度二维湍流中提取不可逆的能量

Irreversible energy extraction from negative temperature two-dimensional turbulence

论文作者

Onuki, Yohei

论文摘要

通常用统计力学来解释在各种地球物理系统中观察到的二维湍流流的形成和过渡。与普通系统不同,对于二维流,为统计平衡定义的绝对温度可能会占负值。在负温度的状态下,热力学的第二定律预测,微观波动中的能量是不可逆地转化为宏观形式的。这项研究探讨了使用基本概念模型在二维流中这种单向能量转换的可能性。我们考虑一个有界结构域中包含的不可压缩流体,其形状被外部强加的力扭曲。与通常的固定边界案例不同,域内的流量通过移动横向边界通过压力工作与外部系统交换。同时,流场仍然受涡度保守的限制。从Kraichnan的宏伟典型合奏开始,当域形在有限的时间内从一种形状变形到另一种形状时,就建立了Jarzynski平等。这种平等指出,在域失真周期中,净能流通过边界的方向随着系统的初始温度的迹象而变化。进行数值实验以验证这一理论论点并研究能量汇率的参数依赖性。

The formation and transition of patterns of two-dimensional turbulent flows observed in various geophysical systems are commonly explained in terms of statistical mechanics. Different from ordinary systems, for a two-dimensional flow, the absolute temperature defined for a statistical equilibrium can take negative values. In a state of negative temperature, the second law of thermodynamics predicts that energy in microscopic fluctuations is irreversibly converted to a macroscopic form. This study explores the possibility of this one-way energy conversion in a two-dimensional flow using a basic conceptual model. We consider an inviscid incompressible fluid contained in a bounded domain, the shape of which is distorted by an externally imposed force. Unlike the usual fixed boundary cases, the flow energy within the domain is exchanged with the external system via pressure work through the moving lateral boundary. Concurrently, the flow field remains constrained by vorticity conservation. Beginning from a state of Kraichnan's grand-canonical ensemble, when the domain shape is distorted from one shape to another in a finite time, the Jarzynski equality is established. This equality states that, on average, the direction of a net energy flow through the boundary during a cycle of domain distortion changes with the sign of the initial temperature of the system. Numerical experiments are carried out to verify this theoretical argument and to investigate the parameter dependence of the energy exchange rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源