论文标题
部分可观测时空混沌系统的无模型预测
Open-set Recognition via Augmentation-based Similarity Learning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The primary assumption of conventional supervised learning or classification is that the test samples are drawn from the same distribution as the training samples, which is called closed set learning or classification. In many practical scenarios, this is not the case because there are unknowns or unseen class samples in the test data, which is called the open set scenario, and the unknowns need to be detected. This problem is referred to as the open set recognition problem and is important in safety-critical applications. We propose to detect unknowns (or unseen class samples) through learning pairwise similarities. The proposed method works in two steps. It first learns a closed set classifier using the seen classes that have appeared in training and then learns how to compare seen classes with pseudo-unseen (automatically generated unseen class samples). The pseudo-unseen generation is carried out by performing distribution shifting augmentations on the seen or training samples. We call our method OPG (Open set recognition based on Pseudo unseen data Generation). The experimental evaluation shows that the learned similarity-based features can successfully distinguish seen from unseen in benchmark datasets for open set recognition.