论文标题

部分可观测时空混沌系统的无模型预测

A Representation Separation Perspective to Correspondences-free Unsupervised 3D Point Cloud Registration

论文作者

Zhang, Zhiyuan, Sun, Jiadai, Dai, Yuchao, Zhou, Dingfu, Song, Xibin, He, Mingyi

论文摘要

基于深度学习的方法,遥感字段中的3D点云注册已大大提出,其中刚性转换要么直接从两个点云(无对应的方法)回归,要么是从学习的对应关系(基于对应关系的方法)中计算得出的。现有的无对应方法通常学习整个点云的整体表示,这对于部分和嘈杂的点云很脆弱。在本文中,我们从表示分离的角度提出了一个无对应的无监督点云注册(UPCR)方法。首先,我们将输入点云建模为姿势不变表示和姿势相关表示的组合。其次,与姿势相关的表示分别用于学习源云和目标点云的相对姿势WRT。第三,刚性转化是从上述两个学到的相对姿势中获得的。我们的方法不仅过滤了姿势不变表示的干扰,而且对部分到派对点云或噪声也很强。基准数据集上的实验表明,我们的无监督方法的性能比最新的监督注册方法可比性甚至更好。

3D point cloud registration in remote sensing field has been greatly advanced by deep learning based methods, where the rigid transformation is either directly regressed from the two point clouds (correspondences-free approaches) or computed from the learned correspondences (correspondences-based approaches). Existing correspondences-free methods generally learn the holistic representation of the entire point cloud, which is fragile for partial and noisy point clouds. In this paper, we propose a correspondences-free unsupervised point cloud registration (UPCR) method from the representation separation perspective. First, we model the input point cloud as a combination of pose-invariant representation and pose-related representation. Second, the pose-related representation is used to learn the relative pose wrt a "latent canonical shape" for the source and target point clouds respectively. Third, the rigid transformation is obtained from the above two learned relative poses. Our method not only filters out the disturbance in pose-invariant representation but also is robust to partial-to-partial point clouds or noise. Experiments on benchmark datasets demonstrate that our unsupervised method achieves comparable if not better performance than state-of-the-art supervised registration methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源