论文标题
在预处理电磁积分方程的快速直接解决方案上
On the Fast Direct Solution of a Preconditioned Electromagnetic Integral Equation
论文作者
论文摘要
这项工作为高频制度中的电磁积分方程提供了快速直接的求解器策略。新方案依赖于适当的预处理组合配方,并导致单个骨架形式和身份方程。这是通过提取适当选择的等效循环系统问题正规化椭圆光谱后获得的。然后,通过利用伍德伯里矩阵身份,操作员提取部分的低排名表示,并获得系统矩阵的倒数,并得出具有良好复杂性的方案,适用于多个右侧的解决方案。理论上的考虑伴随着数值结果,这两个结果都证实并显示了新开发方案的实际相关性。
This work presents a fast direct solver strategy for electromagnetic integral equations in the high-frequency regime. The new scheme relies on a suitably preconditioned combined field formulation and results in a single skeleton form plus identity equation. This is obtained after a regularization of the elliptic spectrum through the extraction of a suitably chosen equivalent circulant problem. The inverse of the system matrix is then obtained by leveraging the Woodbury matrix identity, the low-rank representation of the extracted part of the operator, and fast circulant algebra yielding a scheme with a favorable complexity and suitable for the solution of multiple right-hand sides. Theoretical considerations are accompanied by numerical results both of which are confirming and showing the practical relevance of the newly developed scheme.