论文标题

GPT-D:通过故意降低人工神经语言模型引起与痴呆有关的语言异常

GPT-D: Inducing Dementia-related Linguistic Anomalies by Deliberate Degradation of Artificial Neural Language Models

论文作者

Li, Changye, Knopman, David, Xu, Weizhe, Cohen, Trevor, Pakhomov, Serguei

论文摘要

深度学习(DL)技术涉及大量模型参数的技术在区分认知健康个体和患有阿尔茨海默氏病(AD)的语言的任务上表现出了令人印象深刻的表现。但是,关于他们概括超出公开研究的小参考集的能力的问题仍然存在。作为直接拟合模型参数的替代方案,我们提出了一种新颖的方法,通过该方法,通过该方法,通过该方法,通过该方法与一般英语文本进行了预训练的变压器DL模型(GPT-2)与自身的人工降级版本(GPT-D)配对,以计算这两种模型'\ textit {perperxities {perperxities}在认知上健康和不受欢迎的人之间的比例。该技术从广泛使用的“ cookie Theft”图片描述任务中处理文本数据的最新性能,并且与已建立的替代方案不同,也可以很好地推广到自发对话。此外,GPT-D生成具有已知与AD相关的特征的文本,证明了与痴呆相关的语言异常的诱导。我们的研究是迈向更好地理解生成神经语言模型的内部连接,其产生的语言以及痴呆症对人言语和语言特征的有害影响的一步。

Deep learning (DL) techniques involving fine-tuning large numbers of model parameters have delivered impressive performance on the task of discriminating between language produced by cognitively healthy individuals, and those with Alzheimer's disease (AD). However, questions remain about their ability to generalize beyond the small reference sets that are publicly available for research. As an alternative to fitting model parameters directly, we propose a novel method by which a Transformer DL model (GPT-2) pre-trained on general English text is paired with an artificially degraded version of itself (GPT-D), to compute the ratio between these two models' \textit{perplexities} on language from cognitively healthy and impaired individuals. This technique approaches state-of-the-art performance on text data from a widely used "Cookie Theft" picture description task, and unlike established alternatives also generalizes well to spontaneous conversations. Furthermore, GPT-D generates text with characteristics known to be associated with AD, demonstrating the induction of dementia-related linguistic anomalies. Our study is a step toward better understanding of the relationships between the inner workings of generative neural language models, the language that they produce, and the deleterious effects of dementia on human speech and language characteristics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源