论文标题
重力波推断的深度随访:GW151226的案例研究
Deep follow-up for gravitational-wave inference: a case study with GW151226
论文作者
论文摘要
重力波事件的新分析引发了有关某些事件性质的问题。例如,ligo-virgo-kagra最初确定的GW151226是与质量比率$ q \ of0.5 $和有效的Inspiral Spin $χ_ {\ text {fext {eff}} \大约0.2 $的合并。但是,最近的作品提供了替代图片:GW151226是一个较低的质量事件$ q \ j \约0.3 $,略高于自旋$χ_ {\ text {eff}}} \大约0.3 $。由于每次分析都采用了广泛的差异,因此解决这种差异一直在挑战。这项工作引入了``深入''框架,以有效地计算参数空间中两个不同峰之间的后赔率。在此过程中,我们旨在帮助解决有关与天体物理矛盾的引力波事件的真实性质的争议。我们的建议不是替代标准推理技术。取而代之的是,我们的方法提供了一种诊断工具,可以理解冲突结果之间的差异。我们通过研究三个{$ q $ - $χ_ {\ text {eff}} $} $}的峰来证明这种方法。我们找到$(q \ sim0.5,χ_ {\ text {fext {fef}} \ sim0.2)$解释仅比$(q \ sim0.3,χ_ {\ sim0.3,χ_ {\ text {eff}}} \ sim0.3)$ of $ sim \ sim1.77 oss n of sim111.77 bepthesy by(q \ sim0.3,χ_ {\ sim0.3,χ_ {\ sim0.3,χ排除了。我们讨论在重力波天文学中产生更可靠的参数估计研究的策略。
New analyses of gravitational wave events raise questions about the nature of some events. For example, LIGO--Virgo--KAGRA initially determined GW151226 to be a merger with a mass-ratio $q\approx0.5$ and effective inspiral spin $χ_{\text{eff}}\approx 0.2$. However, recent works offer an alternative picture: GW151226 is a lower-mass-ratio event $q \approx 0.3$ with slightly higher spin $χ_{\text{eff}}\approx 0.3$. This discrepancy has been challenging to resolve as a wide range of differences are employed for each analysis. This work introduces a ``deep follow-up'' framework to efficiently compute the posterior odds between two different peaks in parameter space. In doing so, we aim to help resolve disputes about the true nature of gravitational-wave events associated with conflicting astrophysical interpretations. Our proposal is not a replacement for standard inference techniques; instead, our method provides a diagnostic tool to understand discrepancies between conflicting results. We demonstrate this method by studying three {$q$-$χ_{\text{eff}}$} peaks proposed for GW151226. We find the $(q\sim0.5, χ_{\text{eff}}\sim0.2)$ interpretation is only slightly preferred over the $(q\sim0.3, χ_{\text{eff}}\sim0.3)$ hypothesis with a posterior odds of $\sim1.7\pm0.4$, suggesting that neither of the two peaks can be ruled out. We discuss strategies to produce more reliable parameter estimation studies in gravitational-wave astronomy.