论文标题
Pandora:辐射的偏振辅助神经分解
PANDORA: Polarization-Aided Neural Decomposition Of Radiance
论文作者
论文摘要
从多个图像(也称为逆渲染)中重建对象的几何形状和外观是计算机图形和视觉中的一个基本问题。逆渲染本质上是不适合的,因为捕获的图像是未知的照明条件,材料属性和场景几何形状的复杂函数。表示场景特性作为基于坐标的神经网络的最新进展促进了神经反向渲染,从而导致了令人印象深刻的几何重建和新颖的视图合成。我们的关键见解是,极化是神经反向渲染的有用提示,因为极化强烈取决于表面:表面正态,并且在弥漫性和镜面反射率方面截然不同。随着商品,芯片,两极分化传感器的出现,捕获极化已变得实用。因此,我们提出了基于隐式神经表示的极化反向渲染方法Pandora。从对象的多视图极化图像中,Pandora共同提取对象的3D几何形状,将传出的光芒分离为弥漫性和镜面,并估计对象上的照明。我们表明,潘多拉(Pandora)的表现优于最先进的辐射分解技术。潘多拉(Pandora)输出清洁的表面重建无纹理伪像,准确地造型较强的镜面,并在实际的非结构化场景下估算照明。
Reconstructing an object's geometry and appearance from multiple images, also known as inverse rendering, is a fundamental problem in computer graphics and vision. Inverse rendering is inherently ill-posed because the captured image is an intricate function of unknown lighting conditions, material properties and scene geometry. Recent progress in representing scene properties as coordinate-based neural networks have facilitated neural inverse rendering resulting in impressive geometry reconstruction and novel-view synthesis. Our key insight is that polarization is a useful cue for neural inverse rendering as polarization strongly depends on surface normals and is distinct for diffuse and specular reflectance. With the advent of commodity, on-chip, polarization sensors, capturing polarization has become practical. Thus, we propose PANDORA, a polarimetric inverse rendering approach based on implicit neural representations. From multi-view polarization images of an object, PANDORA jointly extracts the object's 3D geometry, separates the outgoing radiance into diffuse and specular and estimates the illumination incident on the object. We show that PANDORA outperforms state-of-the-art radiance decomposition techniques. PANDORA outputs clean surface reconstructions free from texture artefacts, models strong specularities accurately and estimates illumination under practical unstructured scenarios.