论文标题
舒伯特品种的Seshadri分层和标准单项理论
Seshadri stratification for Schubert varieties and Standard Monomial Theory
论文作者
论文摘要
作者已经开发了Seshadri分层理论,目的是为具有某些不错属性的嵌入式投射品种建立一种新的几何方法。在本文中,我们调查了Seshadri分层,该分层是由舒伯特次级群产生的舒伯特品种。我们表明,[32]中开发的标准单元理论与这种新策略兼容。
The theory of Seshadri stratifications has been developed by the authors with the intention to build up a new geometric approach towards a standard monomial theory for embedded projective varieties with certain nice properties. In this article, we investigate the Seshadri stratification on a Schubert variety arising from its Schubert subvarieties. We show that the standard monomial theory developed in [32] is compatible with this new strategy.