论文标题

使用图形摘要改善问题对知识图的回答

Improving Question Answering over Knowledge Graphs Using Graph Summarization

论文作者

Li, Sirui, Wong, Kok Kai, Zhu, Dengya, Fung, Chun Che

论文摘要

通过知识图(kgs)(kgqa)上的问题回答(QA)系统自动使用kg中包含的三元组来回答自然语言问题。关键的想法是将kg的问题和实体表示为低维嵌入。以前的KGQA试图使用知识图嵌入(KGE)和深度学习(DL)方法来代表实体。但是,kges太浅了,无法捕获表达特征,而DL方法则独立处理三倍。最近,图形卷积网络(GCN)已证明在提供实体嵌入方面非常出色。但是,将GCN用于KGQA是效率低下的,因为GCN在汇总社区时会平均处理所有关系。同样,使用以前的kgqas时可能会出现问题:在大多数情况下,问题通常具有不确定的答案。为了解决上述问题,我们提出了使用经常性卷积神经网络(RCNN)和GCN的图形摘要技术。 GCN和RCNN的组合确保嵌入与与问题相关的关系共同传播,从而更好地答案。提出的图形摘要技术可用于解决KGQA无法以不确定的答案回答问题的问题。在本文中,我们在最常见的问题上演示了提出的技术,即单一关系问题。实验表明,与GCN相比,使用RCNN和GCN的提出的图形摘要技术可以提供更好的结果。当问题的答案数量不确定时,提出的图形摘要技术可显着改善实际答案的回忆。

Question Answering (QA) systems over Knowledge Graphs (KGs) (KGQA) automatically answer natural language questions using triples contained in a KG. The key idea is to represent questions and entities of a KG as low-dimensional embeddings. Previous KGQAs have attempted to represent entities using Knowledge Graph Embedding (KGE) and Deep Learning (DL) methods. However, KGEs are too shallow to capture the expressive features and DL methods process each triple independently. Recently, Graph Convolutional Network (GCN) has shown to be excellent in providing entity embeddings. However, using GCNs to KGQAs is inefficient because GCNs treat all relations equally when aggregating neighbourhoods. Also, a problem could occur when using previous KGQAs: in most cases, questions often have an uncertain number of answers. To address the above issues, we propose a graph summarization technique using Recurrent Convolutional Neural Network (RCNN) and GCN. The combination of GCN and RCNN ensures that the embeddings are propagated together with the relations relevant to the question, and thus better answers. The proposed graph summarization technique can be used to tackle the issue that KGQAs cannot answer questions with an uncertain number of answers. In this paper, we demonstrated the proposed technique on the most common type of questions, which is single-relation questions. Experiments have demonstrated that the proposed graph summarization technique using RCNN and GCN can provide better results when compared to the GCN. The proposed graph summarization technique significantly improves the recall of actual answers when the questions have an uncertain number of answers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源