论文标题
使用变形材料的原子模型来验证X射线线路构图缺陷分析
Validating x-ray line-profile defect analysis using atomistic models of deformed material
论文作者
论文摘要
晶体材料中错位缺陷的群体对其性质有很大影响,因此在实验样本中分析该人群的能力具有很大的实用性。作为在透射电子显微镜中直接计数的补充,对X射线衍射线轮廓的定量分析是重要的工具。这是一种间接的量化方法,因此需要仔细验证推论过程的基本模型。在这里,我们承诺直接评估线轮廓分析通过利用变形铜单晶体的原子模型来量化错量的各个方面的能力。我们直接分析这些模型,以确定缺陷含量的确切细节(我们的“地面真相”)。然后,我们为模型生成理论线轮廓,并使用实验分析中使用的相同过程对其进行分析。这导致了我们能够与确切数据进行比较的缺陷含量的衡量标准。我们表明,线轮廓分析能够在两个数量级上提供脱位密度和堆叠故障分数的合理预测。我们进一步展示了沃伦(Warren)和阿维尔巴赫(Averbach)所调用的均方分布分布的均方体截止半径如何对应于根据Wilkens模型的人工构造的限制性随机分布中的细胞大小。总体而言,我们的结果为使用线轮廓分析的使用来量化结晶材料中的线和平面缺陷。
The population of dislocation defects in a crystalline material strongly influences its properties, so the ability to analyse this population in experimental samples is of great utility. As a complement to direct counting in the transmission electron microscope, quantitative analysis of x-ray diffraction line profiles is an important tool. This is an indirect approach to quantification and so requires careful validation of the physical models that underly the inferential process. Here we undertake to directly evaluate the ability of line profile analysis to quantify aspects of the dislocation and stacking fault populations by exploiting atomistic models of deformed copper single crystals. We directly analyse these models to determine exact details of the defect content (our "ground truth"). We then generate theoretical line profiles for the models and analyse them using the same procedures used in experimental analysis. This leads to inferred measures of the defect content which we are able to compare with the exact data. We show that line profile analysis is able to provide sound predictions of both dislocation density and stacking fault fraction across two orders of magnitude. We further show how the outer cut-off radius in the mean-square strain of a dislocation distribution invoked by Warren and Averbach corresponds to the cell size in an artificially constructed restrictedly-random distribution of dislocations according to the model of Wilkens. Overall, our results lend important new support to the use of line profile analysis for the quantification of line and planar defects in crystalline materials.