论文标题
相邻的上下文协调网络,用于光学遥感图像中的显着对象检测
Adjacent Context Coordination Network for Salient Object Detection in Optical Remote Sensing Images
论文作者
论文摘要
光学遥感图像(RSIS)或RSI-SOD中的显着对象检测(SOD)是理解光学RSIS的新兴主题。但是,由于光学RSIS和自然场景图像(NSIS)之间的差异,直接将NSI-SOD方法应用于光学RSIS的差异无法实现令人满意的结果。在本文中,我们提出了一个新颖的相邻上下文协调网络(Acconet),以探索RSI-SOD的编码器架构中相邻特征的协调。具体而言,Acconet由三个部分组成:编码器,相邻的上下文协调模块(ACCOM)和解码器。作为ACCONET的关键组成部分,ACCOM激活了编码器的输出特征的显着区域,并将其传输到解码器。 ACCOM包含一个本地分支和两个相邻分支,以同时协调多级特征。本地分支以自适应方式突出显示了显着区域,而相邻分支则引入了相邻级别的全球信息以增强显着区域。此外,为了扩展经典解码器块的功能(即几个级联的卷积层),我们将其扩展使用两个分叉,并提出一个分叉 - 聚集块,以捕获解码器中的上下文信息。在两个基准数据集上进行的广泛实验表明,在9个评估指标下,所提出的Acconet优于22种最先进的方法,并且在单个NVIDIA TITAN X GPU上运行多达81 fps。我们方法的代码和结果可在https://github.com/mathlee/acconet上获得。
Salient object detection (SOD) in optical remote sensing images (RSIs), or RSI-SOD, is an emerging topic in understanding optical RSIs. However, due to the difference between optical RSIs and natural scene images (NSIs), directly applying NSI-SOD methods to optical RSIs fails to achieve satisfactory results. In this paper, we propose a novel Adjacent Context Coordination Network (ACCoNet) to explore the coordination of adjacent features in an encoder-decoder architecture for RSI-SOD. Specifically, ACCoNet consists of three parts: an encoder, Adjacent Context Coordination Modules (ACCoMs), and a decoder. As the key component of ACCoNet, ACCoM activates the salient regions of output features of the encoder and transmits them to the decoder. ACCoM contains a local branch and two adjacent branches to coordinate the multi-level features simultaneously. The local branch highlights the salient regions in an adaptive way, while the adjacent branches introduce global information of adjacent levels to enhance salient regions. Additionally, to extend the capabilities of the classic decoder block (i.e., several cascaded convolutional layers), we extend it with two bifurcations and propose a Bifurcation-Aggregation Block to capture the contextual information in the decoder. Extensive experiments on two benchmark datasets demonstrate that the proposed ACCoNet outperforms 22 state-of-the-art methods under nine evaluation metrics, and runs up to 81 fps on a single NVIDIA Titan X GPU. The code and results of our method are available at https://github.com/MathLee/ACCoNet.