论文标题

Sera:在非结构化环境中的协作机器人计划的安全有效的反应性障碍

SERA: Safe and Efficient Reactive Obstacle Avoidance for Collaborative Robotic Planning in Unstructured Environments

论文作者

Dastider, Apan, Lin, Mingjie

论文摘要

在工业4.0时代,非结构化环境中多个机器人之间的安全有效协作越来越重要。但是,在人类和其他机器人之间实现强大而自主的合作需要现代的机器人系统才能具有有效的接近感和避免反应性障碍。在本文中,我们提出了一种新型方法,用于避免反应性全身障碍物,以确保即使在动态环境中,也可以确保无冲突的机器人机器人相互作用。与基于雅各布型,基于抽样或几何技术的现有方法不同,我们的方法论利用了最新的深度学习进步和拓扑流形学习,从而使其能够轻松地将其推广到具有高计算效率和快速图形遍历技术的其他问题设置。我们的方法使机器人的臂可以主动避免没有直接接触的任意3D形状的障碍,这比传统的工业柯比特环境有了重大改进。为了验证我们的方法,我们在由双6-DOF机器人臂组成的机器人平台上实施,并具有优化的接近传感器放置,能够在干扰水平的不同水平上协作工作。具体而言,一只手臂在实现其预定目标的同时进行反应性全身障碍,而另一只手臂则模仿具有独立和潜在的对抗运动的人类合作者的存在。我们的方法为在非平稳环境中的安全人类机器人协作提供了强大而有效的解决方案。

Safe and efficient collaboration among multiple robots in unstructured environments is increasingly critical in the era of Industry 4.0. However, achieving robust and autonomous collaboration among humans and other robots requires modern robotic systems to have effective proximity perception and reactive obstacle avoidance. In this paper, we propose a novel methodology for reactive whole-body obstacle avoidance that ensures conflict-free robot-robot interactions even in dynamic environment. Unlike existing approaches based on Jacobian-type, sampling based or geometric techniques, our methodology leverages the latest deep learning advances and topological manifold learning, enabling it to be readily generalized to other problem settings with high computing efficiency and fast graph traversal techniques. Our approach allows a robotic arm to proactively avoid obstacles of arbitrary 3D shapes without direct contact, a significant improvement over traditional industrial cobot settings. To validate our approach, we implement it on a robotic platform consisting of dual 6-DoF robotic arms with optimized proximity sensor placement, capable of working collaboratively with varying levels of interference. Specifically, one arm performs reactive whole-body obstacle avoidance while achieving its pre-determined objective, while the other arm emulates the presence of a human collaborator with independent and potentially adversarial movements. Our methodology provides a robust and effective solution for safe human-robot collaboration in non-stationary environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源