论文标题
针对固定参数可拖动的图形问题的重点跳和修复约束处理在感应子图下关闭
Focused Jump-and-Repair Constraint Handling for Fixed-Parameter Tractable Graph Problems Closed Under Induced Subgraphs
论文作者
论文摘要
维修运算符通常用于以约束的组合优化进行约束处理。我们研究了配备有量身定制的跳跃操作的(1+1)〜EA,该操作可用于在图形问题中概率地修复不可行的后代。我们没有将候选溶液发展为整个图,而是扩展了基因型,以允许(1+1)〜EA与实例的增长子集并行开发(诱导的子图)。通过这种方法,我们证明EA能够概率地模拟经典固定参数算法中使用的迭代压缩过程,以在三个NP-HARD图问题上获得随机的FPT性能保证。对于$ k $ - vertexcover,我们证明(1+1)EA使用集中的跳跃和修复可以在$ O(2^k n^2 \ log n)$迭代中找到$ k $ vertex封面(如果存在)。这导致比最著名的($ k $)改进了Vertexcover上进化算法的最著名的参数化。对于比赛中的$ K $ -FEDBACKVEVERTEXET问题,我们证明EA在预期的$ O(2^kk!n^2 \ log n)$ tererations中找到了可行的反馈,并且对于OddCycletRastersversal,我们证明了EA的优化时间是EA $ O(3^K K M N^2^k M N^2 \ log n n)$。对于后两个问题,这构成了任何进化算法的第一个参数化结果。我们讨论如何将框架推广到在诱导子图下结束的其他参数化图问题,并报告实验结果,以说明在混凝土实例类上算法的行为。
Repair operators are often used for constraint handling in constrained combinatorial optimization. We investigate the (1+1)~EA equipped with a tailored jump-and-repair operation that can be used to probabilistically repair infeasible offspring in graph problems. Instead of evolving candidate solutions to the entire graph, we expand the genotype to allow the (1+1)~EA to develop in parallel a feasible solution together with a growing subset of the instance (an induced subgraph). With this approach, we prove that the EA is able to probabilistically simulate an iterative compression process used in classical fixed-parameter algorithmics to obtain a randomized FPT performance guarantee on three NP-hard graph problems. For $k$-VertexCover, we prove that the (1+1) EA using focused jump-and-repair can find a $k$-vertex cover (if one exists) in $O(2^k n^2\log n)$ iterations in expectation. This leads to an exponential (in $k$) improvement over the best-known parameterized bound for evolutionary algorithms on VertexCover. For the $k$-FeedbackVertexSet problem in tournaments, we prove that the EA finds a feasible feedback set in $O(2^kk!n^2\log n)$ iterations in expectation, and for OddCycleTransversal, we prove the optimization time for the EA is $O(3^k k m n^2\log n)$. For the latter two problems, this constitutes the first parameterized result for any evolutionary algorithm. We discuss how to generalize the framework to other parameterized graph problems closed under induced subgraphs and report experimental results that illustrate the behavior of the algorithm on a concrete instance class.