论文标题
瓦尔德(Wald)的熵在一致的一般相对论中
Wald's entropy in Coincident General Relativity
论文作者
论文摘要
等效原理及其普遍性可以实现重力的几何表述。在一般相对论的标准配方中,爱因斯坦的重力相互作用是根据时空曲率而几何的。但是,如果我们包含重力的几何特征,则在平坦的空间中出现了两种替代性(尽管等效),但重力完全归因于扭转或非中性。后者允许简单地表述一般相对论,却忽略了仿期时空结构,即一致的一般相对论。可以使用欧几里得路径积分方法来计算黑洞的熵,该方法强烈依赖于在标准的一般相对性的标准配方中添加边界或调节项。可以使用Wald的公式进行更基本的推导,其中熵与Noether电荷直接相关,并且适用于具有差异不变的一般理论。在这项工作中,我们扩展了Wald的Noether收费方法,用于计算黑洞熵到具有非金属度的空间。使用这种方法,我们表明,一致的一般相对论与改进的动作原理具有与标准一般相对性中众所周知的熵相同的熵。此外,黑洞热力学的第一定律也具有第一定律中出现的能量的明确表达。
The equivalence principle and its universality enables the geometrical formulation of gravity. In the standard formulation of General Relativity á la Einstein, the gravitational interaction is geometrized in terms of the spacetime curvature. However, if we embrace the geometrical character of gravity, two alternative, though equivalent, formulations of General Relativity emerge in flat spacetimes, in which gravity is fully ascribed either to torsion or to non-metricity. The latter allows a much simpler formulation of General Relativity oblivious to the affine spacetime structure, the Coincident General Relativity. The entropy of a black hole can be computed using the Euclidean path integral approach, which strongly relies on the addition of boundary or regulating terms in the standard formulation of General Relativity. A more fundamental derivation can be performed using Wald's formula, in which the entropy is directly related to Noether charges and is applicable to general theories with diffeomorphism invariance. In this work we extend Wald's Noether charge method for calculating black hole entropy to spacetimes endowed with non-metricity. Using this method, we show that Coincident General Relativity with an improved action principle gives the same entropy as the well-known entropy in standard General Relativity. Furthermore the first law of black hole thermodynamics holds and an explicit expression for the energy appearing in the first law is obtained.