论文标题

使用非重叠数据的跨域建议的代码本潜在因素转移

Transfer of codebook latent factors for cross-domain recommendation with non-overlapping data

论文作者

Veeramachaneni, Sowmini Devi, Pujari, Arun K, Padmanabhan, Vineet, Kumar, Vikas

论文摘要

基于协作过滤的推荐系统在许多电子商务应用程序中起着至关重要的作用,因为它们可以根据用户的过去交易和其他类似客户的反馈来指导用户查找其感兴趣的项目。数据稀疏性是由于交易和反馈数据数量较少而引起的协作过滤技术的主要缺点之一。为了减少稀疏性问题,出现了称为转移学习/跨域建议的技术。在转移学习方法中,考虑了来自其他密集域(源)的数据,以预测稀疏域中的丢失等级(目标)。在本文中,我们提出了一种新颖的转移学习方法,用于跨域推荐,其中源域的群集级评级模式(代码簿)是通过共簇技术获得的。此后,我们将最大保证金矩阵分解(MMMF)技术应用于代码簿中,以了解代码簿的用户和项目潜在功能。通过以新颖的方式引入这些潜在特征来实现目标评级矩阵的预测。在实验中,我们证明我们的模型提高了基准数据集上目标矩阵的预测准确性。

Recommender systems based on collaborative filtering play a vital role in many E-commerce applications as they guide the user in finding their items of interest based on the user's past transactions and feedback of other similar customers. Data Sparsity is one of the major drawbacks with collaborative filtering technique arising due to the less number of transactions and feedback data. In order to reduce the sparsity problem, techniques called transfer learning/cross-domain recommendation has emerged. In transfer learning methods, the data from other dense domain(s) (source) is considered in order to predict the missing ratings in the sparse domain (target). In this paper, we come up with a novel transfer learning approach for cross-domain recommendation, wherein the cluster-level rating pattern(codebook) of the source domain is obtained via a co-clustering technique. Thereafter we apply the Maximum Margin Matrix factorization (MMMF) technique on the codebook in order to learn the user and item latent features of codebook. Prediction of the target rating matrix is achieved by introducing these latent features in a novel way into the optimisation function. In the experiments we demonstrate that our model improves the prediction accuracy of the target matrix on benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源