论文标题

在一个实际还原组的组件组上

On the component group of a real reductive group

论文作者

Timashev, Dmitry A.

论文摘要

对于在$ \ mathbb {r} $上定义的连接的线性代数$ g $,我们计算真实lie组$ g(\ mathbb {r})$的组件组$π_0g(\ mathbb {r})$,按maximal split $ t _ q _ q $ q cy(\ mathbb {r})$。特别是,我们恢复了Matsumoto(1964)的定理,即$ g(\ Mathbb {r})的每个连接组件$ intersects $ t _ {\ text {s}}}(\ mathbb {r})$。我们提供$ t _ {\ text {s}}}(\ Mathbb {r})$的明确元素,该元素表示$ g(\ Mathbb {r})$的所有连接组件。该计算基于代数组的实际基因座的结构结果和GALOIS协同学方法。

For a connected linear algebraic group $G$ defined over $\mathbb{R}$, we compute the component group $π_0G(\mathbb{R})$ of the real Lie group $G(\mathbb{R})$ in terms of a maximal split torus $T_{\text{s}}\subseteq G$. In particular, we recover a theorem of Matsumoto (1964) that each connected component of $G(\mathbb{R})$ intersects $T_{\text{s}}(\mathbb{R})$. We provide explicit elements of $T_{\text{s}}(\mathbb{R})$ which represent all connected components of $G(\mathbb{R})$. The computation is based on structure results for real loci of algebraic groups and on methods of Galois cohomology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源