论文标题

识别针对潜在同质性调整的治疗群落中的同伴影响

Identifying Peer Influence in Therapeutic Communities Adjusting for Latent Homophily

论文作者

Nath, Shanjukta, Warren, Keith, Paul, Subhadeep

论文摘要

我们调查了同伴榜样对从治疗界成功毕业(TCS)的滥用和犯罪行为的影响的影响。我们使用来自3个TC的数据,这些数据保留了居民之间肯定的交流记录及其确切的进入和退出日期,从而使我们能够形成同伴网络并定义了感兴趣的因果效应。角色模型效应衡量了居民(EGO)的预期结果的差异,他们可以在自我退出与未毕业之前观察他们的同龄人毕业之一。为了在观察数据中识别出未观察到的同质性的同伴影响,我们用潜在变量模型对网络进行建模。我们表明,当从观察到的网络估算未观察到的潜在位置时,我们的同伴影响估计量是渐近公正的。我们还提出了一种测量误差偏差校正方法,以进一步降低由于估计潜在位置而导致的偏差。我们的模拟表明,提出的潜在同质调整和偏置校正在有限样品中表现良好。我们还通过概率模型将方法扩展到了二进制响应的情况。我们的结果表明,同龄人的毕业对居民毕业的积极影响,并且基于性别,种族和榜样效应的定义有所不同。反事实练习可以通过网络传播直接在治疗的居民身上并间接地对其同龄人进行干预的潜在好处。

We investigate peer role model influence on successful graduation from Therapeutic Communities (TCs) for substance abuse and criminal behavior. We use data from 3 TCs that kept records of exchanges of affirmations among residents and their precise entry and exit dates, allowing us to form peer networks and define a causal effect of interest. The role model effect measures the difference in the expected outcome of a resident (ego) who can observe one of their peers graduate before the ego's exit vs not graduating. To identify peer influence in the presence of unobserved homophily in observational data, we model the network with a latent variable model. We show that our peer influence estimator is asymptotically unbiased when the unobserved latent positions are estimated from the observed network. We additionally propose a measurement error bias correction method to further reduce bias due to estimating latent positions. Our simulations show the proposed latent homophily adjustment and bias correction perform well in finite samples. We also extend the methodology to the case of binary response with a probit model. Our results indicate a positive effect of peers' graduation on residents' graduation and that it differs based on gender, race, and the definition of the role model effect. A counterfactual exercise quantifies the potential benefits of an intervention directly on the treated resident and indirectly on their peers through network propagation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源