论文标题
使用功能统计的纵向数据的小组模式检测
Group pattern detection of longitudinal data using functional statistics
论文作者
论文摘要
组中时间序列数据的主要模式的估计和评估使各个领域的大量应用都受益。与经典的自动相关时间序列分析和现代神经网络技术不同,在本文中,我们提出了方差分析(BATOVA)和置换测试的组合,以更直观的方式,以实现有限的样本量。首先,为了通过配对组比较来分开共同信息并挖掘出额外的分类影响,其结果是通过置换测试分析的,以确定不同组平均值显着不同的时区。不同组的归一化核函数能够反映出分组统一的显着平均特征,对于更深层的解释和群体分类也有意义。为了了解fanova和置换率f检验的提出的方法是否以及何时有效地起作用,我们将估计的内核结果与模拟数据上的基础真相进行了比较。在模拟中确认了模型的效率之后,我们也将其应用于Ravdess面部数据集,以根据面部肌肉收缩(在计算机图形上的所谓动作单元(AU))与中立表演与情感表演进行比较,以基于面部肌肉收缩(所谓的动作单元(AU))来提取人类的情感行为。
Estimations and evaluations of the main patterns of time series data in groups benefit large amounts of applications in various fields. Different from the classical auto-correlation time series analysis and the modern neural networks techniques, in this paper we propose a combination of functional analysis of variance (FANOVA) and permutation tests in a more intuitive manner for a limited sample size. First, FANOVA is applied in order to separate the common information and to dig out the additional categorical influence through paired group comparison, the results of which are secondly analyzed through permutation tests to identify the time zones where the means of the different groups differ significantly. Normalized kernel functions of different groups are able to reflect remarkable mean characteristics in grouped unities, also meaningful for deeper interpretation and group-wise classification. In order to learn whether and when the proposed method of FANOVA and permutation F-test works precisely and efficiently, we compare the estimated kernel results with the ground truth on simulated data. After the confirmation of the model's efficiency from simulation, we apply it also to the RAVDESS facial dataset to extract the emotional behaviors of humans based on facial muscles contractions (so-called action units (AU) technically in computer graphics), by comparing the neutral performances with emotional ones.