论文标题
PAEDID:基于补丁自动编码器的深层图像分解,用于像素级缺陷区域分割
PAEDID: Patch Autoencoder Based Deep Image Decomposition For Pixel-level Defective Region Segmentation
论文作者
论文摘要
无监督的像素级缺陷区域分割是针对各种工业应用的基于图像的异常检测的重要任务。最新的方法具有自己的优点和局限性:基于矩阵分解的方法对噪声具有鲁棒性,但缺乏复杂的背景图像建模能力;基于表示的方法擅长有缺陷的区域定位,但缺乏缺陷区域形状轮廓提取的准确性。基于重建的方法检测到有缺陷的区域与地面真理有缺陷的区域形状轮廓良好匹配,但嘈杂。为了结合两全其美的最好,我们提出了一种基于无监督的贴片自动编码器的深层图像分解(PAEDID)方法,用于有缺陷的区域分割。在训练阶段,我们通过补丁自动编码器(PAE)网络将共同的背景作为深度图像。在推理阶段,我们将异常检测作为图像分解问题,具有深度图像先验和域特异性正规化。通过采用拟议的方法,可以以无监督的方式准确地提取图像中的有缺陷区域。我们证明了PAEDID方法在模拟研究中的有效性和案例研究中的工业数据集。
Unsupervised pixel-level defective region segmentation is an important task in image-based anomaly detection for various industrial applications. The state-of-the-art methods have their own advantages and limitations: matrix-decomposition-based methods are robust to noise but lack complex background image modeling capability; representation-based methods are good at defective region localization but lack accuracy in defective region shape contour extraction; reconstruction-based methods detected defective region match well with the ground truth defective region shape contour but are noisy. To combine the best of both worlds, we present an unsupervised patch autoencoder based deep image decomposition (PAEDID) method for defective region segmentation. In the training stage, we learn the common background as a deep image prior by a patch autoencoder (PAE) network. In the inference stage, we formulate anomaly detection as an image decomposition problem with the deep image prior and domain-specific regularizations. By adopting the proposed approach, the defective regions in the image can be accurately extracted in an unsupervised fashion. We demonstrate the effectiveness of the PAEDID method in simulation studies and an industrial dataset in the case study.