论文标题

SASV 2022:第一个欺骗意见的扬声器验证挑战

SASV 2022: The First Spoofing-Aware Speaker Verification Challenge

论文作者

Jung, Jee-weon, Tak, Hemlata, Shim, Hye-jin, Heo, Hee-Soo, Lee, Bong-Jin, Chung, Soo-Whan, Yu, Ha-Jin, Evans, Nicholas, Kinnunen, Tomi

论文摘要

第一个欺骗意识的说话者验证(SASV)挑战旨在将研究工作整合到说话者验证和反欺骗中。我们通过将欺骗试验引入通常的目标和冒名顶替试验来扩展说话者验证方案。与已建立的ASVSPOOF挑战相反,将重点放在单独的,独立优化的欺骗检测和说话者验证子系统上,SASV的目标是开发集成和共同优化的解决方案。预先训练的欺骗检测和扬声器验证模型作为开源,并用于两个基线SASV解决方案中。模型和基准都可以免费提供给参与者,可用于开发后端融合方法或端到端解决方案。使用提供的共同评估协议,有23个团队提交了SASV解决方案。当用目标评估,真正的非目标和欺骗的非目标试验时,表现最佳的系统将常规扬声器验证系统的同样错误率从23.83%降低到0.13%。 SASV挑战结果证明了当今欺骗检测和说话者验证的最先进方法的可靠性。

The first spoofing-aware speaker verification (SASV) challenge aims to integrate research efforts in speaker verification and anti-spoofing. We extend the speaker verification scenario by introducing spoofed trials to the usual set of target and impostor trials. In contrast to the established ASVspoof challenge where the focus is upon separate, independently optimised spoofing detection and speaker verification sub-systems, SASV targets the development of integrated and jointly optimised solutions. Pre-trained spoofing detection and speaker verification models are provided as open source and are used in two baseline SASV solutions. Both models and baselines are freely available to participants and can be used to develop back-end fusion approaches or end-to-end solutions. Using the provided common evaluation protocol, 23 teams submitted SASV solutions. When assessed with target, bona fide non-target and spoofed non-target trials, the top-performing system reduces the equal error rate of a conventional speaker verification system from 23.83% to 0.13%. SASV challenge results are a testament to the reliability of today's state-of-the-art approaches to spoofing detection and speaker verification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源