论文标题

从快照到歧管 - 剪切流的故事

From snapshots to manifolds - A tale of shear flows

论文作者

Farzamnik, Ehsan, Ianiro, Andrea, Discetti, Stefano, Deng, Nan, Oberleithner, Kilian, Noack, Bernd R., Guerrero, Vanesa

论文摘要

我们从快照数据中提出了一种新型的非线性流形学习,并证明了其优于正交分解(POD)的优势,用于脱落主导的剪切流。关键推动器是等距特征映射,ISOMAP(Tenenbaum等,2000),作为编码器和K-Nearest邻居(KNN)算法作为解码器。提出的技术应用于数值和实验性数据集,包括流体弹球,旋转射流以及几个串联缸的后面。分析流体弹球,歧管能够用三个特征坐标来描述干草叉分叉和混乱状态。这些坐标与涡流阶段和力系数有关。旋流射流的歧管坐标与POD模式振幅相当,但允许更明显的歧管识别,对测量噪声不太敏感。由于对两个串联圆柱体进行了类似的观察(Raiola等,2016)。串联缸在流距离距离处对齐,这对应于单个悬崖体和涡旋脱落的重新触及状态之间的过渡。 ISOMAP揭示了这两个脱落机制,而前两个POD模式振幅的Lissajous图具有一个圆圈。与波动水平相比,歧管模型的重建误差很小,表明低嵌入尺寸包含连贯的结构动力学。预计所提出的ISOMAP-KNN流形学习者在估计,动态建模和控制方面对具有主要相干结构的大量配置非常重要。

We propose a novel non-linear manifold learning from snapshot data and demonstrate its superiority over Proper Orthogonal Decomposition (POD) for shedding-dominated shear flows. Key enablers are isometric feature mapping, Isomap (Tenenbaum et al., 2000), as encoder and K-nearest neighbours (KNN) algorithm as decoder. The proposed technique is applied to numerical and experimental datasets including the fluidic pinball, a swirling jet, and the wake behind a couple of tandem cylinders. Analyzing the fluidic pinball, the manifold is able to describe the pitchfork bifurcation and the chaotic regime with only three feature coordinates. These coordinates are linked to vortex-shedding phases and the force coefficients. The manifold coordinates of the swirling jet are comparable to the POD mode amplitudes, yet allow for a more distinct manifold identification which is less sensitive to measurement noise. As similar observation is made for the wake of two tandem cylinders (Raiola et al., 2016). The tandem cylinders are aligned in streamwise distance which corresponds to the transition between the single bluff body and the reattachment regimes of vortex shedding. Isomap unveils these two shedding regimes while the Lissajous plots of first two POD mode amplitudes feature a single circle. The reconstruction error of the manifold model is small compared to the fluctuation level, indicating that the low embedding dimensions contains the coherent structure dynamics. The proposed Isomap-KNN manifold learner is expected to be of large importance in estimation, dynamic modeling and control for large range of configurations with dominant coherent structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源