论文标题

FLDP:当地差异隐私的灵活策略

FLDP: Flexible strategy for local differential privacy

论文作者

Zhao, Dan, Zhao, Suyun, Liu, Ruixuan, Li, Cuiping, Liang, Wenjuan, Chen, Hong

论文摘要

当地差异隐私(LDP)是一种应用无偏统计估计而不是实际数据的技术,通常在数据收集中被采用。特别是,该技术与频率甲壳(FO)一起使用,因为它可以保护每个用户的隐私并防止敏感信息的泄漏。但是,最不发达国家的定义是如此保守,以至于它要求所有输入在扰动后都无法区分。实际上,LDP可以保护每个价值;但是,由于其准确性的成本,它在实际情况下很少使用。在本文中,我们解决了提供削弱但灵活的保护的挑战,即每个值在扰动后只需要与一部分域的一部分没有区别。首先,我们提出了这种削弱但灵活的自由党(FLDP)概念。然后,我们证明了与LDP和DP的关联。其次,我们在满足FLDP的同时为常见的FO问题设计了FHR方法。提出的方法平衡了通信成本,计算复杂性和估计准确性。最后,使用实用和合成数据集的实验结果验证了我们方法的有效性和效率。

Local differential privacy (LDP), a technique applying unbiased statistical estimations instead of real data, is often adopted in data collection. In particular, this technique is used with frequency oracles (FO) because it can protect each user's privacy and prevent leakage of sensitive information. However, the definition of LDP is so conservative that it requires all inputs to be indistinguishable after perturbation. Indeed, LDP protects each value; however, it is rarely used in practical scenarios owing to its cost in terms of accuracy. In this paper, we address the challenge of providing weakened but flexible protection where each value only needs to be indistinguishable from part of the domain after perturbation. First, we present this weakened but flexible LDP (FLDP) notion. We then prove the association with LDP and DP. Second, we design an FHR approach for the common FO issue while satisfying FLDP. The proposed approach balances communication cost, computational complexity, and estimation accuracy. Finally, experimental results using practical and synthetic datasets verify the effectiveness and efficiency of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源