论文标题
关于四维紧凑的ricci solitons的Euler特征和Hitchin-Thorpe不平等
On Euler characteristic and Hitchin-Thorpe inequality for four-dimensional compact Ricci solitons
论文作者
论文摘要
在本文中,我们调查了$ 4 $维的紧凑型Ricci Solitons的几何形状。我们证明,在潜在函数范围内的上限条件下,$ 4 $维的紧凑型梯度Ricci Soliton必须满足经典的Hitchin-Thorpe不平等。另外,还获得了一些量估计。
In this article, we investigate the geometry of $4$-dimensional compact gradient Ricci solitons. We prove that, under an upper bound condition on the range of the potential function, a $4$-dimensional compact gradient Ricci soliton must satisfy the classical Hitchin-Thorpe inequality. In addition, some volume estimates are also obtained.