论文标题

Langevin动力学的定量流体动力学限制梯度界面模型

Quantitative hydrodynamic limits of the Langevin dynamics for gradient interface models

论文作者

Armstrong, Scott, Dario, Paul

论文摘要

我们研究了对应于具有均匀凸相互潜力的$ \ nabla ϕ $(或Ginzburg-landau)界面模型的Langevin动力学。我们将这些Langevin动力学解释为白噪声强迫强迫的非线性抛物线方程,这将问题变成了非线性均质化问题。使用定量均质化方法,我们证明了定量的流体动力学极限,获得表面张力的$ C^2 $,证明对动态轨迹进行了大规模的Lipschitz-type估计,并表明可以将波动 - 隔离关系视为均质化和局限化的通勤性。最后,我们解释了为什么我们认为我们的技术可以适应变性(不均匀)凸相互潜力的设置。

We study the Langevin dynamics corresponding to the $\nablaϕ$ (or Ginzburg-Landau) interface model with a uniformly convex interaction potential. We interpret these Langevin dynamics as a nonlinear parabolic equation forced by white noise, which turns the problem into a nonlinear homogenization problem. Using quantitative homogenization methods, we prove a quantitative hydrodynamic limit, obtain the $C^2$ regularity of the surface tension, prove a large-scale Lipschitz-type estimate for the trajectories of the dynamics, and show that the fluctuation-dissipation relation can be seen as a commutativity of homogenization and linearization. Finally, we explain why we believe our techniques can be adapted to the setting of degenerate (non-uniformly) convex interaction potentials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源