论文标题
$ \ frac {n!} {2} $ supendure for Hook形状的证明
A proof of the $\frac{n!}{2}$ conjecture for hook shapes
论文作者
论文摘要
转换后的MacDonald多项式$ \ widetilde {h}_μ(z; t,q)$的众所周知的表示模型,其中$μ$是整数分区,由Garsia-Haiman模块$ \ Mathcal $ \ Mathcal {H}_μ$ $。我们研究了Bergeron和Garsia的$ \ frac {n!} {k} $猜想,这涉及在交叉点下的某些$ k $ tuplase garsia-haiman模块的行为。在特殊情况下,$μ$具有挂钩形状,我们使用$ \ Mathcal {h}_μ$的基础,这是由于Adin,Remmel和Roichman引起的,可以通过构建两个Garsia-Haiman模块的相互作用来解决$ \ frac {n!} {N!} {2} $ conjocture。
A well-known representation-theoretic model for the transformed Macdonald polynomial $\widetilde{H}_μ(Z;t,q)$, where $μ$ is an integer partition, is given by the Garsia-Haiman module $\mathcal{H}_μ$. We study the $\frac{n!}{k}$ conjecture of Bergeron and Garsia, which concerns the behavior of certain $k$-tuples of Garsia-Haiman modules under intersection. In the special case that $μ$ has hook shape, we use a basis for $\mathcal{H}_μ$ due to Adin, Remmel, and Roichman to resolve the $\frac{n!}{2}$ conjecture by constructing an explicit basis for the intersection of two Garsia-Haiman modules.