论文标题

在光晕质量建模中挖掘成员星系的信息含量

Mining the information content of member galaxies in the halo mass modelling

论文作者

Zhou, Yanrui, Han, Jiaxin

论文摘要

以前的发现,某些卫星星系与中央星系之间的幅度差距可用于改善光晕质量的估计,我们使用机器学习方法对不同成员星系的信息进行了系统的研究,对不同成员星系的信息含量进行了研究。我们采用来自流体动力学模拟的数据,并训练随机森林(RF)算法,以预测其成员星系恒星质量的光环质量。采用详尽的特征选择来解散不同星系成员的重要性。我们确认,与单独的中央估计相比,额外的卫星确实改善了光晕质量估计。但是,使用不同的卫星星系,这种改进的大小没有显着差异。当在光晕质量预测中使用三个星系时,最好的组合始终是中央星系的组合,具有最大的卫星和最小的卫星。此外,在排名前7的星系中,中央星系和两个或三个卫星星系的组合对光环质量进行了近乎理想的估计,而星系的进一步添加不会提高预测的精度。我们证明,可以从条件卫星分布的形状变化中理解这些依赖性,而不同的成员星系在累积恒星质量函数的不同部分中占不同的卤素依赖性特征。

Motivated by previous findings that the magnitude gap between certain satellite galaxy and the central galaxy can be used to improve the estimation of halo mass, we carry out a systematic study of the information content of different member galaxies in the modelling of the host halo mass using a machine learning approach. We employ data from the hydrodynamical simulation IllustrisTNG and train a Random Forest (RF) algorithm to predict a halo mass from the stellar masses of its member galaxies. Exhaustive feature selection is adopted to disentangle the importances of different galaxy members. We confirm that an additional satellite does improve the halo mass estimation compared to that estimated by the central alone. However, the magnitude of this improvement does not differ significantly using different satellite galaxies. When three galaxies are used in the halo mass prediction, the best combination is always that of the central galaxy with the most massive satellite and the smallest satellite. Furthermore, among the top 7 galaxies, the combination of a central galaxy and two or three satellite galaxies gives a near-optimal estimation of halo mass, and further addition of galaxies does not raise the precision of the prediction. We demonstrate that these dependences can be understood from the shape variation of the conditional satellite distribution, with different member galaxies accounting for distinct halo-dependent features in different parts of the cumulative stellar mass function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源