论文标题

通过观看舞蹈视频在野外穿衣

Dressing in the Wild by Watching Dance Videos

论文作者

Dong, Xin, Zhao, Fuwei, Xie, Zhenyu, Zhang, Xijin, Du, Daniel K., Zheng, Min, Long, Xiang, Liang, Xiaodan, Yang, Jianchao

论文摘要

尽管在服装转移方面取得了重大进展,这是以人为中心的图像产生的最适用的方向之一,但现有作品忽略了野外图像,表现出严重的服装人物未对准以及明显的质地细节中的明显退化。因此,本文在现实世界中进行了虚拟的尝试,并带来了真实性和自然性的基本改进,尤其是对于松散的衣服(例如,裙子,正式礼服),具有挑战性的姿势(例如,交叉,弯曲的腿)和杂乱的背景。具体而言,我们发现像素流在处理松散的服装方面出色,而顶点流则是硬姿势,并且通过结合其优势,我们提出了一个名为Wflow的新型生成网络,该网络可以有效地推动服装转移到野外环境。此外,以前的方法需要配对的图像进行培训。取而代之的是,我们通过使用自我监督的跨框架培训和在线周期优化的新构建的大规模视频数据集来减少艰辛的艰辛。拟议的舞蹈50k可以通过覆盖舞蹈姿势下各种各样的衣服来提高现实世界虚拟的调味料。广泛的实验证明了我们的Wflow在生成现实的服装转移结果对野外图像中的优势,而无需诉诸昂贵的配对数据集。

While significant progress has been made in garment transfer, one of the most applicable directions of human-centric image generation, existing works overlook the in-the-wild imagery, presenting severe garment-person misalignment as well as noticeable degradation in fine texture details. This paper, therefore, attends to virtual try-on in real-world scenes and brings essential improvements in authenticity and naturalness especially for loose garment (e.g., skirts, formal dresses), challenging poses (e.g., cross arms, bent legs), and cluttered backgrounds. Specifically, we find that the pixel flow excels at handling loose garments whereas the vertex flow is preferred for hard poses, and by combining their advantages we propose a novel generative network called wFlow that can effectively push up garment transfer to in-the-wild context. Moreover, former approaches require paired images for training. Instead, we cut down the laboriousness by working on a newly constructed large-scale video dataset named Dance50k with self-supervised cross-frame training and an online cycle optimization. The proposed Dance50k can boost real-world virtual dressing by covering a wide variety of garments under dancing poses. Extensive experiments demonstrate the superiority of our wFlow in generating realistic garment transfer results for in-the-wild images without resorting to expensive paired datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源