论文标题

Eventor:FPGA平台上的一个有效的基于事件的单眼立体声加速器

Eventor: An Efficient Event-Based Monocular Multi-View Stereo Accelerator on FPGA Platform

论文作者

Li, Mingjun, Yang, Jianlei, Qi, Yingjie, Dong, Meng, Yang, Yuhao, Liu, Runze, Pan, Weitao, Yu, Bei, Zhao, Weisheng

论文摘要

事件摄像机是受到生物启发的视觉传感器,随着事件流的形式,异步代表像素级的亮度变化。基于事件的单眼多视图立体声(EMV)是一种利用事件流以估算具有已知轨迹的半密度3D结构的技术。对于基于事件的单眼大满贯,这是一项至关重要的任务。但是,所需的密集计算工作负载使其在嵌入式平台上的实时部署具有挑战性。在本文中,通过实现最关键和最耗时的阶段,包括事件反向预测和FPGA上的体积射线计数,提出Eventor作为快速有效的EMV加速器。高度平行且完全管道的处理元素是通过FPGA专门设计的,并与嵌入式臂集成为异质系统,以改善吞吐量并减少记忆足迹。同时,通过重新安排,近似计算和混合数据量化,将EMVS算法重新构成更具硬件的方式。戴维斯(Davis)数据集的评估结果表明,与英特尔i5 CPU平台相比,Eventor的能源效率最高可提高$ 24 \ times $。

Event cameras are bio-inspired vision sensors that asynchronously represent pixel-level brightness changes as event streams. Event-based monocular multi-view stereo (EMVS) is a technique that exploits the event streams to estimate semi-dense 3D structure with known trajectory. It is a critical task for event-based monocular SLAM. However, the required intensive computation workloads make it challenging for real-time deployment on embedded platforms. In this paper, Eventor is proposed as a fast and efficient EMVS accelerator by realizing the most critical and time-consuming stages including event back-projection and volumetric ray-counting on FPGA. Highly paralleled and fully pipelined processing elements are specially designed via FPGA and integrated with the embedded ARM as a heterogeneous system to improve the throughput and reduce the memory footprint. Meanwhile, the EMVS algorithm is reformulated to a more hardware-friendly manner by rescheduling, approximate computing and hybrid data quantization. Evaluation results on DAVIS dataset show that Eventor achieves up to $24\times$ improvement in energy efficiency compared with Intel i5 CPU platform.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源