论文标题

基于深度语言模型的跨媒体科学研究成就检索

Cross-Media Scientific Research Achievements Retrieval Based on Deep Language Model

论文作者

Wang, Benzhi, Liang, Meiyu, Kou, Feifei, Xu, Mingying

论文摘要

科学和技术的大数据包含许多跨媒体信息。科学论文中有图像和文本。SINGLE模态搜索方法不能很好地满足科学研究人员的需求。本文提出了一种基于深层语言模型(CardL)的跨密歇根科学研究成就检索方法。科学研究成就,然后通过不同模态数据之间的语义相似性来实现跨媒体检索。实验结果表明,所提出的CARDL方法比现有方法获得了更好的跨模式检索性能。关键词科学和技术大数据;跨媒体检索;跨媒体语义协会学习;深层语言模型;语义相似性

Science and technology big data contain a lot of cross-media information.There are images and texts in the scientific paper.The s ingle modal search method cannot well meet the needs of scientific researchers.This paper proposes a cross-media scientific research achievements retrieval method based on deep language model (CARDL).It achieves a unified cross-media semantic representation by learning the semantic association between different modal data, and is applied to the generation of text semantic vector of scientific research achievements, and then cross-media retrieval is realized through semantic similarity matching between different modal data.Experimental results show that the proposed CARDL method achieves better cross-modal retrieval performance than existing methods. Key words science and technology big data ; cross-media retrieval; cross-media semantic association learning; deep language model; semantic similarity

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源