论文标题
小行星路由问题:昂贵的Black-Box置换优化的基准
The Asteroid Routing Problem: A Benchmark for Expensive Black-Box Permutation Optimization
论文作者
论文摘要
受到最近的第11个全球轨迹优化竞赛的启发,本文将小行星路由问题(ARP)作为算法的现实基准,用于昂贵的置换空间中昂贵的限制性限制的黑盒优化。给定一组小行星的轨道和一个出发时期,ARP的目标是找到从地球轨道开始的访问小行星的最佳顺序,以最大程度地减少成本,以衡量的速度变化所需的速度变化的总和来完成旅行和时间,并以时间为单位,直到从事的时间上,直到访问了最后一个拜访,直到访问了最后的访问。我们提供开源代码,用于生成任意大小的实例并评估问题的解决方案。作为初步分析,我们比较了两种方法的结果,用于置换空间中昂贵的黑盒优化,即组合有效的全球优化(CEGO),一种基于高斯流程的贝叶斯优化器以及基于概率的估计算法模型,基于高斯流程的贝叶斯优化器以及不平衡的槌棒模型(UMM)。我们研究了每种算法的最佳置换表示形式,无论是基于等级还是基于订单。此外,我们分析了提供良好的初始解决方案的影响,该解决方案是由贪婪最近的邻居启发式方法对算法的性能产生的。结果表明,比较算法的改进方向。
Inspired by the recent 11th Global Trajectory Optimisation Competition, this paper presents the asteroid routing problem (ARP) as a realistic benchmark of algorithms for expensive bound-constrained black-box optimization in permutation space. Given a set of asteroids' orbits and a departure epoch, the goal of the ARP is to find the optimal sequence for visiting the asteroids, starting from Earth's orbit, in order to minimize both the cost, measured as the sum of the magnitude of velocity changes required to complete the trip, and the time, measured as the time elapsed from the departure epoch until visiting the last asteroid. We provide open-source code for generating instances of arbitrary sizes and evaluating solutions to the problem. As a preliminary analysis, we compare the results of two methods for expensive black-box optimization in permutation spaces, namely, Combinatorial Efficient Global Optimization (CEGO), a Bayesian optimizer based on Gaussian processes, and Unbalanced Mallows Model (UMM), an estimation-of-distribution algorithm based on probabilistic Mallows models. We investigate the best permutation representation for each algorithm, either rank-based or order-based. Moreover, we analyze the effect of providing a good initial solution, generated by a greedy nearest neighbor heuristic, on the performance of the algorithms. The results suggest directions for improvements in the algorithms being compared.