论文标题

flexr:用语言嵌入的几乎没有分类用于胸部X射线的结构化报告

FlexR: Few-shot Classification with Language Embeddings for Structured Reporting of Chest X-rays

论文作者

Keicher, Matthias, Zaripova, Kamilia, Czempiel, Tobias, Mach, Kristina, Khakzar, Ashkan, Navab, Nassir

论文摘要

由于任务的耗时性,胸部X射线报告的自动化引起了极大的兴趣。但是,鉴于医学信息的复杂性,写作风格的多样性以及错别字和不一致的潜力,使用自然语言处理指标量化自由文本报告的临床准确性已被证明具有挑战性。另一方面,结构化报告和标准化报告可以提供一致性并正式评估临床正确性。但是,结构化报告的高质量注释很少。因此,我们提出了一种预测结构化报告模板中句子定义的临床发现的方法,该发现可用于填充此类模板。该方法涉及使用胸部X射线和相关自由文本放射学报告训练对比的语言图像模型,然后为每个结构化发现并优化分类器来预测医疗图像中的临床发现。结果表明,即使对训练的图像级注释有限,该方法也可以完成心脏肿瘤严重性评估和胸部X射线中定位病理的结构化报告任务。

The automation of chest X-ray reporting has garnered significant interest due to the time-consuming nature of the task. However, the clinical accuracy of free-text reports has proven challenging to quantify using natural language processing metrics, given the complexity of medical information, the variety of writing styles, and the potential for typos and inconsistencies. Structured reporting and standardized reports, on the other hand, can provide consistency and formalize the evaluation of clinical correctness. However, high-quality annotations for structured reporting are scarce. Therefore, we propose a method to predict clinical findings defined by sentences in structured reporting templates, which can be used to fill such templates. The approach involves training a contrastive language-image model using chest X-rays and related free-text radiological reports, then creating textual prompts for each structured finding and optimizing a classifier to predict clinical findings in the medical image. Results show that even with limited image-level annotations for training, the method can accomplish the structured reporting tasks of severity assessment of cardiomegaly and localizing pathologies in chest X-rays.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源