论文标题
BPS相干状态和本地化
BPS coherent states and localization
论文作者
论文摘要
我们介绍了在量规组的行动中平均进行的连贯状态,以研究$ {\ cal n} = 4 $ sym理论中半bps状态的相关因子。这些平均相干状态的重叠是相关器的生成函数,可以用Harish-Chandra-Itzykzon-Zuber(HCIZ)积分编写。我们表明,该公式立即导致根据最初在Corley,Jevicki和Ramgoolam工作中获得的字符来计算两个点函数的归一化。我们还发现了$ a_ {n-1} $ Quivers的各种概括,这些Quivers直接从单位组的其他可解决的积分中遵循。所有这些都可以使用本地化方法计算。当我们将生成函数的参数推广到集体坐标时,就会有一个主要的鞍座控制这些相干状态在描述单个广告巨型引力的制度中的有效作用。我们还讨论了如何在此公式中添加开放字符串。这些将产生依赖于HCIZ积分确定的集合中单位矩阵组件的相关因子来确定异常的尺寸。我们还讨论了球体巨头是如何源于格拉曼积分,如何获得主导鞍座以及在这种情况下如何添加开放字符串的。有主导鞍座的事实有助于了解开放字符串的$ 1/n $扩展。我们将连贯的国家想法概括为研究$ 1/4 $和$ 1/8 $ bps状态,而不是单一集体的一般积分。
We introduce coherent states averaged over a gauge group action to study correlators of half BPS states in ${\cal N}=4 $ SYM theory. The overlaps of these averaged coherent states are a generating function of correlators and can be written in terms of the Harish-Chandra-Itzykzon-Zuber (HCIZ) integral. We show that this formula immediately leads to a computation of the normalization of two point functions in terms of characters obtained originally in the work of Corley, Jevicki and Ramgoolam. We also find various generalizations for $A_{n-1}$ quivers that follow directly from other solvable integrals over unitary groups. All of these can be computed using localization methods. When we promote the parameters of the generating function to collective coordinates, there is a dominant saddle that controls the effective action of these coherent states in the regime where they describe single AdS giant gravitons. We also discuss how to add open strings to this formulation. These will produce calculations that rely on correlators of matrix components of unitaries in the ensemble that is determined by the HCIZ integral to determine anomalous dimensions. We also discuss how sphere giants arise from Grassman integrals, how one gets a dominant saddle and how open strings are added in that case. The fact that there is a dominant saddle helps to understand how a $1/N$ expansion arises for open strings. We generalize the coherent state idea to study $1/4$ and $1/8$ BPS states as more general integrals over unitary groups.