论文标题
关于三角剖分作为3D人姿势估计的一种自我审议的形式
On Triangulation as a Form of Self-Supervision for 3D Human Pose Estimation
论文作者
论文摘要
当标记的数据丰富时,从单个图像中进行3D姿势估计的监督方法非常有效。但是,由于对地面3D标签的获取是劳动的大量且耗时的,因此最近的关注已转向半决和弱监督的学习。产生有效的监督形式,几乎没有注释,仍然在拥挤的场景中构成重大挑战。在本文中,我们建议通过加权区分三角剖分施加多视文几何约束,并在没有标签时将其用作一种自我设计的形式。因此,我们以一种方式训练2D姿势估计器,以使其预测对应于对三角姿势的重新投影,并在其上训练辅助网络以产生最终的3D姿势。我们通过一种加权机制来补充三角剖分,从而减轻了由自我批判或其他受试者的遮挡引起的嘈杂预测的影响。我们证明了半监督方法对人类36M和MPI-INF-3DHP数据集的有效性,以及在具有闭塞的新的多视频多人数据集上。
Supervised approaches to 3D pose estimation from single images are remarkably effective when labeled data is abundant. However, as the acquisition of ground-truth 3D labels is labor intensive and time consuming, recent attention has shifted towards semi- and weakly-supervised learning. Generating an effective form of supervision with little annotations still poses major challenge in crowded scenes. In this paper we propose to impose multi-view geometrical constraints by means of a weighted differentiable triangulation and use it as a form of self-supervision when no labels are available. We therefore train a 2D pose estimator in such a way that its predictions correspond to the re-projection of the triangulated 3D pose and train an auxiliary network on them to produce the final 3D poses. We complement the triangulation with a weighting mechanism that alleviates the impact of noisy predictions caused by self-occlusion or occlusion from other subjects. We demonstrate the effectiveness of our semi-supervised approach on Human3.6M and MPI-INF-3DHP datasets, as well as on a new multi-view multi-person dataset that features occlusion.