论文标题

通过自我监督的姿势对准细粒的对象分类

Fine-Grained Object Classification via Self-Supervised Pose Alignment

论文作者

Yang, Xuhui, Wang, Yaowei, Chen, Ke, Xu, Yong, Tian, Yonghong

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Semantic patterns of fine-grained objects are determined by subtle appearance difference of local parts, which thus inspires a number of part-based methods. However, due to uncontrollable object poses in images, distinctive details carried by local regions can be spatially distributed or even self-occluded, leading to a large variation on object representation. For discounting pose variations, this paper proposes to learn a novel graph based object representation to reveal a global configuration of local parts for self-supervised pose alignment across classes, which is employed as an auxiliary feature regularization on a deep representation learning network.Moreover, a coarse-to-fine supervision together with the proposed pose-insensitive constraint on shallow-to-deep sub-networks encourages discriminative features in a curriculum learning manner. We evaluate our method on three popular fine-grained object classification benchmarks, consistently achieving the state-of-the-art performance. Source codes are available at https://github.com/yangxh11/P2P-Net.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源