论文标题

$ q $ - 理性减少和$ q $ - $π$的系列的销售

$q$-Rational Reduction and $q$-Analogues of Series for $π$

论文作者

Wang, Rong-Hua, Zhong, Michael X. X.

论文摘要

在本文中,我们介绍了多项式减少的$ q $ - 动态,最初是为了过度几何而开发的。使用$ q $ -Gosper表示形式,我们描述了合理函数的结构,这些结构可总结与给定的$ q $ - hyphemetric项相乘。该结构定理使我们能够将$ Q $ - 多项式减少概括为理性案例,该案例可用于自动证明和发现$ Q $ - 身份。作为应用程序,介绍了几个$ Q $ - $π$的系列。

In this paper, we present a $q$-analogue of the polynomial reduction which was originally developed for hypergeometric terms. Using the $q$-Gosper representation, we describe the structure of rational functions that are summable when multiplied with a given $q$-hypergeometric term. The structure theorem enables us to generalize the $q$-polynomial reduction to the rational case, which can be used in the automatic proof and discovery of $q$-identities. As applications, several $q$-analogues of series for $π$ are presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源