论文标题

通过本地跟踪器合奏的全球跟踪

Global Tracking via Ensemble of Local Trackers

论文作者

Zhou, Zikun, Chen, Jianqiu, Pei, Wenjie, Mao, Kaige, Wang, Hongpeng, He, Zhenyu

论文摘要

长期跟踪的症结在于难以通过视外或遮挡引起的不连续运动跟踪目标。现有的长期跟踪方法遵循两种典型策略。第一个策略采用本地跟踪器来执行平稳的跟踪,并使用另一个重新检测器来检测目标丢失时。虽然它可以利用诸如历史外观和目标的位置之类的时间上下文,但这种策略的潜在限制是,本地跟踪器倾向于将附近的干扰物误认为是目标,而不是激活重新检测器时,当真实的目标不见了。其他长期跟踪策略在全球图像中在整个图像中跟踪目标,而不是基于先前的跟踪结果来跟踪本地跟踪。不幸的是,这种全球跟踪策略无法有效利用时间上下文。在这项工作中,我们结合了两种策略的优势:在全球视图中跟踪目标的同时利用时间上下文。具体来说,我们通过散布完整图像的本地跟踪器的集合来执行全局跟踪。一个本地跟踪器可以稳定地处理目标的平滑移动。当本地跟踪器由于突然不连续移动而意外失去了目标时,另一个靠近目标的本地跟踪器被激活,并可以轻松地接管跟踪以定位目标。当激活的本地跟踪器通过利用时间上下文在本地执行跟踪,而本地跟踪器的合奏则使我们的模型成为了跟踪的全局视图。在六个数据集上进行的广泛实验表明,我们的方法对最新算法有利。

The crux of long-term tracking lies in the difficulty of tracking the target with discontinuous moving caused by out-of-view or occlusion. Existing long-term tracking methods follow two typical strategies. The first strategy employs a local tracker to perform smooth tracking and uses another re-detector to detect the target when the target is lost. While it can exploit the temporal context like historical appearances and locations of the target, a potential limitation of such strategy is that the local tracker tends to misidentify a nearby distractor as the target instead of activating the re-detector when the real target is out of view. The other long-term tracking strategy tracks the target in the entire image globally instead of local tracking based on the previous tracking results. Unfortunately, such global tracking strategy cannot leverage the temporal context effectively. In this work, we combine the advantages of both strategies: tracking the target in a global view while exploiting the temporal context. Specifically, we perform global tracking via ensemble of local trackers spreading the full image. The smooth moving of the target can be handled steadily by one local tracker. When the local tracker accidentally loses the target due to suddenly discontinuous moving, another local tracker close to the target is then activated and can readily take over the tracking to locate the target. While the activated local tracker performs tracking locally by leveraging the temporal context, the ensemble of local trackers renders our model the global view for tracking. Extensive experiments on six datasets demonstrate that our method performs favorably against state-of-the-art algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源