论文标题
在偿付能力约束下的最佳再保险设计
Optimal reinsurance design under solvency constraints
论文作者
论文摘要
我们考虑从保险公司到再保险公司的最佳风险转移。本文考虑的问题表述与金融中的最佳投资组合问题密切相关,并具有一些关键区别。特别是,保险公司的盈余在这里(通常是这种情况下)通过布朗尼动议近似,而不是用于建模金融资产的几何布朗动议。此外,风险敞口通过再保险“降低”,而不是通过风险投资“向上”。这会导致最佳设计中有趣的定性差异。 在本文中,使用Martingale方法,我们得出了最佳设计,这是比例非廉价再保险设计的函数,从而最大程度地提高了保险盈余终端价值的二次效用。我们还考虑了对终端价值的几个现实限制:严格的下边界,概率(价值处于风险)的约束以及分别在$ \ Mathbb {p} $和$ \ Mathbb {q} $测量中的预期短缺(有条件的价值)约束。在所有情况下,最佳的再保险设计归结为与各种自付额的残留比例的比例保护和类似选项的保护(停止损失)的组合。设置了比例和免赔额,以使初始资本完全分配。最佳设计与金融中最佳投资组合的比较特别有趣。结果说明了结果。
We consider the optimal risk transfer from an insurance company to a reinsurer. The problem formulation considered in this paper is closely connected to the optimal portfolio problem in finance, with some crucial distinctions. In particular, the insurance company's surplus is here (as is routinely the case) approximated by a Brownian motion, as opposed to the geometric Brownian motion used to model assets in finance. Furthermore, risk exposure is dialled "down" via reinsurance, rather than "up" via risky investments. This leads to interesting qualitative differences in the optimal designs. In this paper, using the martingale method, we derive the optimal design as a function of proportional, non-cheap reinsurance design that maximises the quadratic utility of the terminal value of the insurance surplus. We also consider several realistic constraints on the terminal value: a strict lower boundary, the probability (Value at Risk) constraint, and the expected shortfall (conditional Value at Risk) constraints under the $\mathbb{P}$ and $\mathbb{Q}$ measures, respectively. In all cases, the optimal reinsurance designs boil down to a combination of proportional protection and option-like protection (stop-loss) of the residual proportion with various deductibles. Proportions and deductibles are set such that the initial capital is fully allocated. Comparison of the optimal designs with the optimal portfolios in finance is particularly interesting. Results are illustrated.